Designing for palpability: Workshop at Pervasive 2007, 13-16 May 2007, Toronto, Canada. http://www.ist-palcom.org/palpable-pervasive-2007

A Seamless Hybrid Communication System for
Transient Locations

Roberto Ghizzioli, Giovanni Rimassa, and Dominic Greenwood

Whitestein Technologies AG,
Pestalozzistrasse 24, 8032 Ziirich, Switzerland
{rgh,gri,dgr}owhitestein.com
http://www.whitestein.com

Abstract. This paper presents the RASCAL System, a middleware
component able to palpably ensure that user-level services communi-
cating across infrastructure or ad-hoc networks continue to work even
when deployed in disruptive environments such as major incidents sites.
By palpable we mean that users should be able to notice, comprehend
communication actions and - where necessary - negotiate different lev-
els of user control. This work highlights the features of the system, the
end-user interaction and an evaluation scenario.

Key words: pervasive computing, hybrid networks, autonomic commu-
nication

1 Introduction

Mobility is now a central aspect of everyday life with mobile users expecting to
be always-best-connected in whatever location they are and in whatever task
they are performing. In the majority of cases this implies two things: (1) they
expect anywhere and anytime access with the maximum capacity on offer, and
(2) they expect their information to get through (both sent and received) at
all times. Under normal circumstances both of these requirements are relatively
easy to meet, but each becomes more difficult (especially the second aspect)
when users move through, or are located in, environments that are disruptive,
resulting in rapidly changing coverage of different network technologies. This is
particularly problematic in emergency scenarios when reliable communication
between emergency workers at major incident sites is vital.

The Resilience and Adaptivity System for Connectivity over Ad-hoc Links
(RASCAL) was designed to deal with such disruption by maximizing the oppor-
tunity for a message to reach its target. RASCAL is developed as a contribution
to the Palpable Computing (PalCom) initiative and forms a layer of the PalCom
Communication stack [3]. PalCom is particularly concerned with the composi-
tion of devices, software services and other resources into connected assemblies
that may flux over time, be non-localized and heterogeneous. Devices in these
assemblies are typically loosely connected and thus require the network indepen-
dent, flexible, and dependable connectivity offered by RASCAL.

Monika Buscher
Designing for palpability: Workshop at Pervasive 2007, 13-16 May 2007, Toronto, Canada. http://www.ist-palcom.org/palpable-pervasive-2007

2 Roberto Ghizzioli, Giovanni Rimassa, and Dominic Greenwood

As people can only trust and creatively employ technologies they can under-
stand, RASCAL exhibits palpability, that is, people can notice and easily com-
prehend provided services and make them “plain or obvious”' or “palpable”.
RASCAL exploits the support for palpability that the PalCom open architec-
ture provides through an easy to use GUI that allows users to notice and inspect
the internal state of the system at multiple levels.

The remainder of this paper is organized as follows: Section 2 presents the
design features of RASCAL. Section 3 describes the RASCAL architecture. Sec-
tion 4 presents the evaluation of a prototype before concluding in Section 5.

2 Design Features of RASCAL

RASCAL is a middleware software that resides between a user application (such
as email, instant messengers, Web browsers, GPS and map services, etc.) and
the underlying network communication interfaces acting to enhance the user ex-
perience when these applications are used in disruptive environments. We define
a disruptive environment as a location where one or more disruptive behav-
iours can affect the status of a system. Examples include natural disasters (e.g.,
tsunamis, hurricanes, floods, bush fires, etc.), major incidents (e.g., plane crash,
traffic accident, building fires, etc.), and everyday events (e.g., power failure,
server breakdown, etc.), etc.

Enhancing the user experience in disruptive situations implies making auto-
nomic decisions when sending/receiving application messages to/from a target
node. To make autonomic decisions, RASCAL must be aware of the network
resources available in the environment and optionally of the usage context of
applications. However, to make computing palpable, autonomic decisions should
be taken in ways that users can notice and make sense of, and users should be
supported in negotiating a different level of user control if they so wish.

With connection-aware communication we provide a set of policies enacted
by the RASCAL prototype based on the status of the network when send-
ing/receiving user application messages. These policies can for example be based
on available network technologies or on some QoS parameters such as the load of
the nodes/devices involved in the communication or with contingency situations
such as failovers. A connection-aware policy could consider using an alternative
interface for sending messages to a particular node if the currently used interface
fails.

With wusage-aware communication we provide a set of policies enacted by
RASCAL based on deployed user-level services. Examples of these are: contin-
gency management decisions, content adaptation decisions, deferred service pro-
visioning decisions, role management decisions, etc. An example of a contingency
policy particularly useful in disruptive environments consists of sending a mes-
sage using two or more different routes simultaneously to increase the likelihood
that the message reaches the target node.

! Oxford English Dictionary

A Seamless Hybrid Communication System for Transient Locations 3

All these network and usage aware policies can be combined differently. How-
ever, the ability to combine in itself does not alone make for useful and powerful
RASCAL functionality. It is here that RASCAL benefits from, and contributes
to, the development of the PalCom open architecture. While people should not
be inundated with system information, they do need to be able to notice and
make sense of actual and potential functionality. Therefore, most of the time
when disruption of communication occurs, RASCAL acts autonomically and
automatically, while recording all actions taken through the user GUI.

3 The RASCAL System Architecture

A high level description of how RASCAL operates is as follows: a message to
be sent by a PalCom device (e.g., user application) is intercepted by RASCAL
which decides, based on a set of user-configurable policies, the most appropriate
actions to take on that message. RASCAL can easily be plugged into the PalCom
communication stack used by all PalCom devices, that in turn constitute parts of
PalCom assemblies (see section sec:evaluation for an example). When RASCAL
is integrated into a PalCom node the node becomes “RASCALized”.

The RASCAL prototype is built using JADE [1], an open source software
agent middleware. The operational logic of RASCAL is thus managed by a soft-
ware agent which treats messages by applying policies before sending the message
into the network.

To sense and negotiate with the external world the agent implements several
JADE kernel services such as services able to communicate with underlying net-
work layers, the routing or function layers and with the policy engine. Moreover,
the RASCAL agent updates, and gets commands from, the end user through a
GUL. Figure 1(a) shows the described architecture.

1o x|
' Media Manager smi> =
: : | T eeseeereres RASOAL everts s |
Service ! ——— -
R H <add name="mmstatus"> —
Outgoing Incoming <use name="templatesevent's
[— Device MSG Device MSG =createx
| <arg name="Intettace’t>
: aul —— <arg name="alive"i-
1 i Notifications =irreatos
Lo Adons /7 N e =lolx
e -OU RASCAL Outgoing Messages =
| g g To Date Cortent o
) Pl =1.0" E =
k3] Tamiversior 1|
] encoding=150-8855-1 [=|
i ?=<IDOCTYPE
datagram:i10.24.. [Wed Feb 1 SeniceListRequest
"""" - SYSTEM "palcorn.ctd"=
,,,,,,,,,,,, <SendcelistRequest =
Incoming MSG <2l wersion="1.0"
encading=150-8858-1' ||
3 Com mu n Icatlon i Incoming Message
Service : [Fom | pae | Gortent Il
| ; | ‘<'7><mwevsmr\=‘1 o H
"""""""""""""""""""" e ainos 150 a-1' L=
(a) Internal architecture. (b) Graphical user interface.

Fig. 1. The RASCAL System

4 Roberto Ghizzioli, Giovanni Rimassa, and Dominic Greenwood

The RASCAL user interface is an important part of the prototype providing
support for palpability. It is able to receive all the events triggered by envi-
ronmental changes. Figure 1(b) shows the outgoing and the incoming messages
received by the current device and the policy editor. Its features are under a
continuous refinement process based on feedback from end users.

Decisions on how to treat received messages can be applied using policies,
that is, as a rule governing choices in the behaviour of systems. The used policy
server is Ponder2 [2] which provides both a policy engine and an XML human
readable policy description language.

4 Evaluation

RASCAL has recently been integrated into the iterative, participatory design
process practiced in PalCom. We are currently carrying out experiments with
end users in major incident emergency response scenarios. This section presents
one of the recently conducted mock-up situations of a real-world major incident.

<use name="/policy">
<add name="contentAdapt">
<use name="/template/policy">
<create type="obligation"
’I: event="/event/mmstatus” active="true">
@l <arg name="alive"/>

<condition>
<eq>protocol;datagram</eq>
<eg>lalive;false</eq>

</condition>
<action>
<use name="/rascalmo">
<sendLowResolutionPicture

D
Incident Site --}Q protocol="bluetooth"/>
\ </use>

{ FireFighter3 < action>

.............. </use>
FireFighter2 </add>
<luse>

Infrastructure Link
——————— Ad-Hoc Link

en

FireFighter1

Condition

Action

(a) Scenario. (b) Policy.

Fig. 2. Major Incident evaluation.

Within this experiment a building fire depicted in Figure 2(a) is considered.
Here three firefighters are moving relatively close to one another to evacuate
people from the building on fire. They are using special RASCALized digital
maps (in our examples instantiated on tablet PCs, each with a built in camera
and also running a map service, which shows the FireFighter where they are on
the map). Their duty is to notify the command center and the other members
of the team of findings related to the visited building(s), e.g., the positions of
injured people. To do this, they make special marks on the map displayed on
their tablet PC. Firefighters can also take pictures to assist the command center
with gaining a visible overview of the overall incident status. Furthermore, in

A Seamless Hybrid Communication System for Transient Locations 5

this example, FF1 and FF2 are connected via both ad-hoc and infrastructure
networks and FF3 only via an ad-hoc connection. In this situation, through the
multi-hop capabilities of RASCAL, seamlessly all four actors (the three firefight-
ers and the command center) are able to communicate with one another. For
example FF3 communicates with the command center via the ad-hoc connection
with FF2.

Figure 2(b) shows the definition of one of the policies defined in the fire-
fighter’s RASCALized devices. This policy sends low resolution pictures to the
command center in the case when a device is not infrastructure connected.

In our experiment FF1 moves into an area where the infrastructure connec-
tion fails. The RASCAL agent running on the device is notified by the policy
engine and hands over all communication with FF2 to the available ad-hoc con-
nection. Given the importance of sending images to the command center and
giving the low nominal bandwidth of the Bluetooth technology, pictures are first
automatically reduced in quality (i.e., resolution) before transmission. Later,
when FF1 returns to an area with infrastructure network coverage, communica-
tions with the command center are automatically returned to the infrastructure
connection with images once again sent in normal, high resolution.

To achieve a balance between automation and user control RASCAL poli-
cies can be set to either automatically adjust quality according to connection
constraints, or to ask the device user (i.e., the FireFighter) to explicitly select
either higher quality/slower transmission or lower quality/faster transmission.
Automatic decisions can also provide user notifications offering the option to
override if necessary or preferred.

5 Conclusions

This paper has briefly presented the RASCAL prototype which helps users to
palpably maximize the chances of messages reaching their target, even when
moving in or through disruptive environments. In particular, this paper gives an
overview of how RASCAL features can be useful in a major incident scenario.
Perhaps the most innovative and powerful feature of RASCAL is how it sup-
ports people in making its actual and potential functioning palpable by defining
resilience and adaptivity rules able to deal with disruptive environments such as
major incidents.

The RASCAL prototype is currently under development. The outcome of
the PalCom open architecture and the feedback of the end user are all inputs
used to improve the prototype itself. Future work will concentrate on autonomic
aspects, in particular on the definition of policies used in major incidents and
improvement of the graphical user interface.

Acknowledgments. The authors acknowledge the EU Palpable Computing
(IST-002057) FET project, which funded a proportion of the RASCAL project,
and the many PalCom consortium members that contributed toward to work.

6 Roberto Ghizzioli, Giovanni Rimassa, and Dominic Greenwood

References

1. Bellifemine F. L., Caire G., and Greenwood D. Developing Multi-Agent Systems
with JADE. John Wiley & Sons, 2007.

2. Damianou N., Dulay N., Lupu E., and Sloman M. The ponder policy specification
language. In POLICY °01: Proceedings of the International Workshop on Policies
for Distributed Systems and Networks, pages 18-38, London, UK, 2001. Springer-
Verlag.

3. Andersen P., Bardram J. E., Christensen H. B., Corry A.A. V., Greenwood D.,
Hansen K. M., and Schmid R. An open architecture for palpable computing - some
thoughts on object technology, palpable computing, and architectures for ambient
computing. In Proceedings of the Workshop on Object Technology for Ambient In-
telligence, 2005.

