
Virtual Machines for Ambient Computing:

A Palpable Computing Perspective

OT4AmI ECOOP Workshop Position Paper

Ulrik Pagh Schultz Erik Corry Kasper V. Lund

PalCom, http://www.ist-palcom.org

University of Aarhus Esmertec

Denmark

June 3, 2005

Abstract

Ambient computing promises to deliver a smooth end-user experi-
ence where computers integrated into the environment automatically and
transparently support users in their daily tasks. Users must however
always remain in control; balancing transparency and automation with
awareness and control is the goal of the “Palpable Computing” project
(http://www.ist-palcom.org). As an extension of ambient computing,
PalCom places requirements on many parts of the system architecture; we
here address the requirements placed on the underlying virtual machine.
Specifically, we describe the overall design and features of our current
prototype implementation of a virtual machine for palpable computing
systems, and outline our approach to resolving critical issues within re-
flection, scalability, and stability.

1 Introduction

Ambient computing promises to deliver a smooth end-user experience where
computers integrated into the environment automatically and transparently
support users in their daily tasks. We believe however that users must al-
ways remain in control; balancing transparency and automation with aware-
ness and control is the goal of the “Palpable Computing” project (PalCom,
http://www.ist-palcom.org, details later in the paper). Palpable computing
complements key features of ambient computing systems, such as invisibility
and end-user composition of devices, with dual features (e.g., visibility and de-
composition) that enable users to navigate and influence the computing system.

PalCom (and ambient computing in general) places requirements on many
parts of the system architecture, including the division of a computing system

1



into individual services, the distributed communication protocols, the underly-
ing component model, etc. It is however not obvious to what extent PalCom
places requirements on an underlying virtual machine (a virtual machine can
optionally be used on PalCom devices to provide the usual advantages in terms
of portability and mobility of compiled code.) Nevertheless, we believe that
directly supporting certain core qualities of PalCom in the virtual machine will
vastly facilitate the implementation of the higher-level layers of the system.

We are currently developing a prototype virtual machine for palpable com-
puting systems, as part of the PalCom project. In this paper we describe the
overall design and features of our implementation, and outline an approach to
resolving two critical issues in palpable computing: reflection and implementa-
tion decoupling (the latter is essential for achieving scalability, and stability).
We believe that our approach is general in the sense that it is applicable to
ambient computing in general and that the same techniques can be generally
useful in virtual machines.

Note. The virtual machine described in this paper is also one of the topics
of the paper “An Open Architecture for Palpable Computing: Some Thoughts
on Object Technology, Palpable Computing, and Architectures for Ambient
Computing” also submitted to this workshop.

Context: PalCom

Palpable computing can be seen as extending ambient computing with addi-
tional characteristics for user control. We are in the context of this paper only
interested in a few of these characteristics; for a more complete treatment we
refer to the PalCom website [10]. Palpable computing systems offer not only
invisibility (the capacity of unobtrusively performing computing tasks in the
background environment) but also visibility, that is, the capacity of making vis-
ible to users what they are doing and what they may do. Moreover, systems
should offer both construction (the ability to support end-user composition of
devices or services to form new devices and/or services) and also deconstruction,
that is, the ability to disassemble a device or service into its constituent parts
to enable understanding and manipulating each part individually.

2 PreVM

We now describe our prototype virtual machine for palpable computing systems,
dubbed “PreVM” (Palpable runtime environment Virtual Machine). The goal
of PreVM is to match the evolving needs within the PalCom project, resulting
in a specification and reference implementation of a virtual machine for PalCom
devices.

PreVM is a language-neutral virtual machine designed to support object-
oriented languages. PreVM is dynamically typed, which requires each language
to implement its proper type checks (e.g., the “instance of” relation in Java), but

2



on the other hand imposes no restrictions on the type system of the languages
that it supports. For example, languages such as Beta and Java 1.5 that sport
type systems with different forms of covariance can both be implemented on the
same virtual machine without incurring redundant type checks. The underlying
virtual machine does however enforce the same safety rules found in Smalltalk:
integers cannot be manipulated as pointers, only existing fields can be accessed
from an object, and only methods declared in the class of an object can be called
on the object.

PreVM programs are deployed in binary components which are instantiated
as run-time components, objects that encapsulate a set of classes and their
required and provided interfaces. We have implemented source-language-to-
binary component compilers for the Smalltalk, Java and Beta languages [6, 7,
8]. Interoperability between programs written in each language is currently
restricted, but we are working on an approach based on interface specifications
to permit high-level and type-safe interaction between components written in
different languages. Note that due to restrictions on the physical characteristics
of devices (most notably the available memory), standard libraries from each
of these languages cannot be used. Rather, we are developing a common set of
fine-grained components encapsulating common library functionality required
by PalCom devices.

PreVM is implemented in Java, but is currently being reimplemented in
C++. Core PalCom functionality such as communication and discovery is im-
plemented as components running on the virtual machine. Based on previous
experience with the OSVM embedded Smalltalk product from Esmertec, the tar-
get embedded device is a 32-bit processor with 128K of physical memory [1, 3].

3 Reflection

Features such as visibility, construction, and deconstruction require the under-
lying system to exhibit a significant degree of flexibility; this flexibility can be
implemented using reflection. Reflection for object-oriented languages ranges
from the more restricted (and efficient) style of Java to more unrestricted (and
inefficient) meta-object protocols; in both cases reflection is performed through
an object-centric interface. As an alternative, we propose the use of a data-
centric approach, where all data that may be relevant for reflection are stored
in a repository, the hierarchical map. A hierarchical map (or h-map for short)
maps a hierarchically organized namespace to values.1 The h-map can be ac-
cessed both locally and remotely, although a more restricted interface based on
asynchronous messaging is used for remote access.

For example, the virtual machine stores all information regarding compo-
nents, their run-time composition and the classes they contain, in the h-map.
This use of h-maps is illustrated in Figure 1. The virtual machine uses this
information directly during execution of the program. Reading values from the

1This use of h-maps is inspired by the Corundum PalCom prototype [13], which again is
inspired by the Plan-9 operating system [11].

3



component

contains
component
defiinition

processes GUI

Server components

core

gpsServer

annotations

classes Request

Reply

name

super

fields

methods

name

required−components

Object

Reply

receiver

body

core /processes/Server/components/core

gpsdevice

contains
process data

class definition
contains

dependency
on other

Figure 1: Components and classes stored in the h-map

h-map enables an inspector tool to determine the runtime wiring between com-
ponents. Writing values to the h-map enables dynamically changing the wiring
between components. Moving subtrees between component definitions enables
deconstructing components and combining them in a new way. Any service run-
ning on the virtual machine can similarly expose information to enable reflective
behavior.

This proposed use of h-maps will in effect turn the virtual machine and its
services “inside out”, allowing their configuration to be inspected and modified
in arbitrary ways. Architecturally, the h-map is convenient for representing
many of the ad-hoc data structures needed internally in the virtual machine.
A higher-level reflection interface can be implemented as a separate component
that can run locally or remotely on a “reflection server.” As a general principle,
we postulate that the more a system is built around static checking, the harder
it is to dynamically modify and update the system (as an example, consider
dynamically modifying the declaration of a class in Java, which is only possible
in very specific circumstances). We belive that a system built around a dynam-
ically evolving h-map structure supports unanticipated use better than a more
traditional, statically configured system.

It is however an open question how much of the virtual machine state it
is useful to store in the h-map; in principle the individual bytecodes and the
program counter could be stored, but that is probably not useful in practice.
Alternatively, parts of the h-map could be virtual, that is, computed (but never
stored) when accessed; this approach would for example allow debugging in-
formation (including the program counter) to be accessed through the h-map.
Last, as a means to improve efficiency, we believe that program specialization
techniques could be employed to specialize the virtual machine implementation
to fixed subtrees in the h-map (this approach would primarily be useful for
statically configured devices).

4 Implementation decoupling

Palpable computing systems, and indeed any ambient computing system, involve
a heterogeneous mix of devices with different capabilities, ranging from standard
workstations to tiny, embedded systems. The palpable computing system must
provide scalability across different devices and stability so that errors in one part
the system do not propagate to other parts of the system. These features are
supported by an appropriate degree of decoupling between different parts of the
implementation.

4



PreVM provides an execution platform for components. Scalability is achieved
by appropriate layering of this platform, allowing the functionality needed in a
concrete scenario to be dynamically installed into the virtual machine. The plat-
form is divided into two layers, the native layer and the virtual layer. The native

layer basically provides an interpreter (or JIT compiler) and a memory man-
ager; it is normally implemented in a low-level programming language such as C
or C++. The virtual layer runs on top of the native layer, is built from dynam-
ically loaded components, and can thus be written in any language supported
by the platform. For example, we have implemented a component loader in
Smalltalk, a thread scheduler in Beta (the native layer provides a simple corou-
tine mechanism [9]), and we are currently implementing a communication stack
in Java. In general, since we want to support bare-bones execution without an
underlying operating system, OS-level functionality such as device drivers and
file systems should also be implemented in the virtual layer. This approach has
already been experimentally verified for embedded Smalltalk in the Esmertec
OSVM product [1].

We believe that application isolation is one of the cornerstones in provid-
ing stability in palpable (ambient) computing systems. Application isolation
is however not easy to achieve on small embedded systems where the virtual
machine and all core functionality must be shared due to memory constraints.
Moreover, such systems normally do not provide hardware support for memory
protection, which is typically used for providing isolated address spaces and gen-
eral memory management in operating systems. Rather, the virtual machine
must provide similar abstraction by limiting interaction between applications
and the underlying layers [4].

PreVM currently provides support for multiple, isolated processes. Process
isolation is however implemented manually, that is, by implementing the virtual
machine such that references are not passed between processes and that each
process has a copy of the virtual layer. This is currently possible because core
functionality such as scheduling between processes is done by the native layer;
as more functionality is moved to the virtual layer, it is more likely that pro-
grammer errors can introduce direct references between processes or interference
between a process and the virtual layer.

We observe that this interference problem is similar to the more general
object aliasing problem [12, 2, 5]. Nevertheless, we wish to allow for a process
to exchange objects with the virtual layer, but only so long as we can guarantee
that the process cannot inappropriately modify structures internal to the virtual
layer. One way to solve this problem would be to disallow exchanging anything
but immutable data between processes and the virtual layer, but one can imagine
other less restrictive solutions to this problem. In general, we are interested in a
concept of lightweight processes, where objects can be contained within specific
domains; such a concept could also be generally useful internally to processes,
to solve some classes of object aliasing problems.

5



References

[1] Esmertec AG. OSVM. http://www.esmertec.com/solutions/M2M/

OSVM/.

[2] Jonathan Aldrich and Craig Chambers. Ownershop domains: Separating
aliasing policy from mechanism. In ECOOP’04 Conference Proceedings,
volume 3086 of Lecture Notes in Computer Science, pages 1–25, 2004.

[3] Jakob R. Andersen, Lars Bak, Steffen Grarup, Kasper V. Lund, Toke Es-
kildsen, Klaus M. Hansen, and Mads Torgersen. Design, Implementation,
and Evaluation of the Resilient Smalltalk Embedded Platform. Computer

Languages, Systems & Structures, 31(3-4):127–141, 2005.

[4] G. V. Back and W. C. Hsieh. Drawing the red line in Java. In Proceedings of

the Seventh Workshop on Hot Topics in Operating Systems, pages 116–121,
Rio Rico, AZ, March 1999. IEEE Computer Society.

[5] Dave Clarke and Sophia Drossopoulou. Ownership, encapsulation and the
disjointness of type and effect. In OOPSLA’02 Conference Proceedings,
pages 292–310, 2002.

[6] A.J. Goldberg and D. Robson. Smalltalk-80: The Language and Its Imple-

mentation. Addison-Wesley, 1983.

[7] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specifi-

cation. Addison-Wesley, second edition, 2000.

[8] O.L. Madsen, B. Møller-Pedersen, and K. Nygaard. Object-oriented pro-

gramming in the Beta programming language. Addison-Wesley, Reading,
MA, USA, 1993.

[9] K. Nygaard and O.J. Dahl. Simula 67. In R.W. Wexelblat, editor, History

of Programming Languages. ACM Press, 1986.

[10] PalCom. PalCom web site. http://www.ist-palcom.org.

[11] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson,
Howard Tricky, and Phil Winterbottom. Plan 9 from Bell Labs. Computing

Systems, 8(3):221–254, 1995.

[12] Nathanael Schärli, Andrew P. Black, and Stéphane Ducasse. Object-
oriented encapsulation for dynamically typed languages. In OOPSLA’04

Conference Proceedings, pages 130–149, October 2004.

[13] Peter Ørbæk. Programming with hierarchical maps. Technical Report
DAIMI PB-575, DAIMI, 2005.

6


