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Abstract. Ambient intelligence and ambient computing is concerned with pro-
viding people with information, means of communication, and entertainment at
any time and at any place. This vision is implemented by distributed populations
of devices capable of adapting their characteristics according to the extant and
anticipated needs of users. Palpable Computing (PalCom) complements and ex-
tends the tenets of ambient computing by focusing on the user experience through
control, understandability, de-construction of systems and variable visibility of
underlying computational process. This paper first presents an Open Architecture
proposed to support the challenges and requirements of palpable computing in-
frastructures. It then moves on to discuss the implications of PalCom to object
technology.

1 Introduction

Consider the following scenario:
A group of paramedics arrive at a large accident scene with more than 20 injured

people. They start attaching medical sensors to each patient while ensuring that data is
relayed via ambulances back to the hospitals’ emergency centres. The software services
on each sensor work together within the assembly of the set of sensors, attached to
a particular patient. The task of sensing data, coordinating the sensors to a specific
patient, identifying this patient, and to relay this data away from the patient is handled
by a sensor assembly software component. A hand-held device used by the paramedics
can discover and query a patient’s sensor network when within range. When sensors
experience network problems – e.g., if sensors on the front and back of a patient cannot
see each other because of the water in the human body – they adapt their behavior to
accommodate the changing network coverage. Seen from the emergency centre at the
hospital, the scope of the accident is the components, sensor assemblies, services, and
actors involved in the accident. They may be handling other accidents with a separate
scope. Moreover, the surgeon on duty on the emergency centre allows the paramedics
at the site to access the hospitals medical record service. While paramedics dispatch
patients to ambulances which take them to different hospitals, the paramedics on site are
able to maintain contact to the patient, i.e., to the computational assembly surrounding
the patient even when the patient is changing context from site to ambulance to hospital,
etc. And, when the patient is moved to the ambulance, some of the sensors are removed
and reused on other patients.



Seen from a software engineering perspective, the above scenario could be real-
ized using a range of existing ubiquitous and ambient computing technology (with a
great deal of effort, however). Seen from a software architecture research perspective,
the above scenario poses a range of questions which is primarily related to how the
users would actually experience and manage a complex computational setup with the
hundreds of wireless computers in a small space, collaborating with background, in-
frastructure services. These questions include:

– While supporting an exceedingly heterogeneous and ever changing computational
environment, such as the accident scene, how can we help users manage their tasks,
whilst maintaining coherence and stability in the supporting systems without the
need to focus on directly handling heterogeneity. For example, how can we support
the paramedics and the clinicians at the hospital to focus on data from one patient
while the sensors and the context is changing? The system should quietly support
human tasks; not be intrusive, obtrusive or interfere unless expected or told to do
so.

– How can we support the large number of devices in this scenario while still ensuring
that users understand what is happening in critical situations such as this one? How
can the user investigate and render visible the inner workings of the technology
in order to understand what is going on? For example, if data from one patient
indicates a serious event, how could the paramedics identify quickly if it is genuine
or result of a sensor malfunction?

– How can users use and re-use software components, services, and devices without
an enormous configuration overhead? How can we help users to reconstruct new
configurations from existing ones? For example, how can sensors in the accident
be re-used and how can on-site medical data be enriched by medical data from the
hospital? And how can users control and manipulate this constant reconstruction
and resource negotiation.

– How can we handle errors and failures in a highly complex and heterogeneous
multi-user, multi-device, multi-service environment? How can we ensure that con-
tingent mechanisms are in place to automatically handle problems while simultane-
ously introspecting the system to inform the user of the problem origin. This must
be managed through close cooperation between the user and system whilst avoiding
the necessity for close coupling which might cause problem conditions to permeate
and cause wider errors or failures.

These challenges and others are addressed in the EU-funded Integrated Project Pal-
Com [13]. This project uses the term ’palpable computing’ to denote a new kind of am-
bient computing which is concerned with the above user-oriented challenges in complex
and dynamic ambient computing environments. One of the primary goals of the PalCom
project is to design an open software architecture for PalCom. This paper presents the
design of this architecture and discusses how object-oriented concepts and technologies
play a core role in it.



2 Architecture Overview

The Open Architecture is the technical nucleus of the PalCom project. Its goal is to serve
as the means of transcribing the challenges discussed in the previous section into a set
of interrelated, computationally realised concepts drawn into a coherent, encompassing
and meaningful architecture. This implies that it must capture the essence of how hu-
man actors interact with, and within, their everyday environments through distributed
populations of palpable and non-palpable entities.

The architecture builds upon established concepts in relevant fields of software en-
gineering expertise, especially object-oriented design. But it also specialises this know-
how to weave a computational fabric that, as the sum of its parts, delivers the means to
pragmatically enable aspects of palpability in real and useful ways.

The PalCom open architecture is a service-oriented architecture which forms the
basis for creating PalCom Systems which primarily consist of a set of networked De-
vices hosting a population of Services. A coordinated group of devices is known as an
Assembly that can be regarded and reasoned about as a whole by either the user or some
other computational entity capable of reasoning (such as the sensor assembly example
in the introduction) [9]. A Service is defined as a remotely accessible, discoverable, self-
contained runtime component that can be composed into aggregates accessible through
a single exposed interface. Each Service consists of one or more Runtime Components
which are in turn deployed instances of PalCom Components - the fundamental level of
computational encapsulation provided by the architecture.

A PalCom System typically consists of services and assemblies running on multiple
networked devices that together populate a user’s environment.

As such, services and assemblies provide the top layer from a user and developer
perspective. Figure 1 shows this layer and the remaining layers of the PalCom archi-
tecture: The bottom layers represents the Hardware and the optional Operating System
of devices participating in PalCom systems. These two layers are considered as pre-
requisite and are therefore not subject to any special treatment with the architectural
scope. The next layer, the Runtime Environment is the lowest aspect of the PalCom Ar-
chitecture and is responsible for hosting PalCom Services on devices. With a PalCom
Runtime Environment in place a device can then be considered as being a PalCom-
enabled device. The Common Infrastructure provides operational support for PalCom
Services and Assemblies, including resource management, contingency management
and security.

Beyond specifying the nature of these layers, the Open Architecture is supported by
a programming model for designing PalCom Components and for orchestrating PalCom
Services. The run-time environment and the common infrastructure layers are described
in more detail in Section 2.1 and Section 2.2 below.

The architecture is in the process of being validated by a number of architectural
prototypes [5] as work streams within the PalCom project.

2.1 Runtime Environment

The PalCom runtime environment acts both as a platform and as a resource to PalCom
entities. It is therefore necessary that at least one instance of the PalCom runtime en-
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Fig. 1. Logical view of the PalCom architecture layers

vironment is located at and available on each PalCom Device. In addition, the runtime
environment is the only element of the PalCom Open Architecture that explicitly relies
on the existence of a network and the capability of PalCom Devices to join and leave
this network when needed.

The description of the runtime environment is divided into two interrelated aspects.
The component model defines the nature and deployment of PalCom Components, as
well as the creation of PalCom Services and PalCom Assemblies. The communication
model defines the mechanisms necessary to provide PalCom Components with remote
communication endpoints, thus transitioning them into PalCom Services. The compo-
nent and communication models as well as the optional virtual machine of the PalCom
architecture are briefly outlined next.

Component Model. A PalCom Component is a unit of functionality, deployment, and
composition with specified interfaces and dependencies to other components [14]. A
PalCom Component consists of three parts: interfaces, an implementation, and anno-
tations. One or more interfaces define the contract of the component, such as the pub-
lished functionality and quality of service. An implementation realizes the contracts
specified in the component’s interfaces. Annotations provide information necessary to
use and execute the component appropriately, for instance, versioning information and
resource requirements for devices on which it should run.

A PalCom Service is deployed as a PalCom Component and instantiated as a Pal-
Com Run-time Component. When instantiated it encapsulates a remotely accessible,
discoverable, self-contained, context-independent, and reactive element of domain or
infrastructure functionality. Examples of services from the accident scenario are a med-



ical sensor data service, a global positioning service, and a persistence service. Prefer-
ably, services are implemented as stateless, in the sense that they do not remember
invoker state from one invocation to the next. This is done in order to minimize impact
on the performance and scalability of PalCom systems.

A PalCom Assembly is a mechanism that allows individual PalCom enabled devices
to be coordinated via composition and orchestration of the services they host. A PalCom
Assembly can be deployed as a composition and coordination specification. Composi-
tion is the ability to specify and scope a set of PalCom Services that contribute toward
the behaviour of a PalCom Assembly. Coordination describes the interaction of services
within the context of an assembly of PalCom enabled devices.

Communication Model. PalCom devices are required to be network enabled to al-
low services to communicate. Two central aspects of the communication model are to
establish a connection and to use the connection for control and data exchange.

To support this the PalCom architecture defines a language-independent announce-
ment and discovery protocol that enables mutual awareness and detection of PalCom
services, assemblies, and the devices hosting them. A PalCom Service will, upon instan-
tiation, make an announcement which is disseminated by the runtime environment to all
receiving devices on the network to which the device is connected. Each announcement
contains a language-independent service descriptor that describes the functionality pro-
vided, the interfaces, and the communication protocol to use. Received announcements
are then forwarded, according to any constraining authorisations, to any hosted Service
that has registered an interest in (via subscription) the particular discovery announce-
ment. As such the protocol has no centralized entities.

Having detected each other, services are then able to make use of one anothers
functionality. Typically, services have no explicit object references to each other, but
rather collaborate by communicating using open interfaces that are remotely accessible.
The communication protocol supported is either message-oriented or proxy-based for
which the infrastructure defines an abstraction layer encapsulating the actual network
technology used by the device.

The message-passing paradigm allows for time, space and flow-decoupling between
the communicating services. Using this scheme, services can communicate in a group-
oriented manner by subscribing to some pattern that messages published by other ser-
vices are then matched against.

Services can also provide proxy objects for proxy-based communication. This en-
sures synchrony between services and grants advantages such as type safety, proto-
col encapsulation and call-site invocation metadata. The run-time environment handles
transferring the proxy object to the service requester site. As far as concrete network
protocols are concerned, proxy objects can both leverage protocols from the commu-
nication infrastructure and encapsulate a private protocol to contact their service. The
latter option could, for example, allow the provision of secure communication via a
specified encryption mechanism.

Virtual Machine. To support portability across multiple hardware devices and operat-
ing systems it is recommended to use a virtual machine part of the runtime environment.



For reasons of, e.g., legacy code or device resource constraints this may not always be
possible; an example would be some of the medical sensors from the emergency sce-
nario above. The specification does however dictate, that if a virtual machine is used, it
must comply to the PalCom Virtual Machine.

The PalCom Virtual Machine is specified as a very simple, light-weight virtual ma-
chine with a minimal memory footprint while still providing among others portability
and mobility support. The virtual machine is specified to be able to run directly on top
of a given microprocessor without requiring an underlying operating system, though
running on top of most operating systems is also possible (akin to the virtual machine
of [1]).

The virtual machine is also designed such that it can be implemented and optimized
to run on devices with memory requirements in the range of 128K bytes. The virtual
machine has a common object format and common binary component format and is
designed to be language independent. The virtual machine supports automatic memory
management including garbage collection.

Finally, the virtual machine contains a remote service interface which supports re-
mote observation, testing and modification of components running on a given device,
and it supports error-handling, communication, reflection and introspection.

2.2 Common Infrastructure

The Common Infrastructure resides on top of the runtime environment and provides a
set of common infrastructure services: Resource Management, Contingency Manage-
ment and Security which each add a layer of quality of service to PalCom systems
through the features they provide for managing and manipulating PalCom components,
services and assemblies. These services are viewed as being of significant value when
implementing a PalCom system, but are not considered mandatory in order to differen-
tiate between baseline features, such as communication, and secondary infrastructure
features that whilst important for creating resilient, well managed systems, are not nec-
essary for the basic implementations.

Resource Management is the means by which PalCom Devices, Components, Ser-
vices, and Assemblies in a PalCom system are aware of and can manipulate resources
available for consumption within their operational environment, including themselves.
The PalCom notion of a resource is drawn from the definition made by Kircher and
Jain [10], who defines a resource as “an entity that is available in limited supply such
that there exists a requester, the resource user, that needs the entity to perform a func-
tion, and there exists a mechanism, the resource provider, that provides the entity on
request”. A PalCom resource can be classified into three types: physical, logical and
functional. Physical resources tend to be characterised as being tangible and include
human users, devices, memory, files, network media, processor cycles, power supply,
etc. Logical resources are the computational abstractions placed over physical resources
in order to manipulate them, such as threads, network connections and file handles.
Functional resources are resources that have a programmatic nature, such as software
components, services and assemblies.



The PalCom runtime environment manages the physical resources of the host de-
vice, exposing their availability and usage characteristics, as logical resources, to the
common infrastructure layered over the runtime environment. The Resource Manage-
ment service of the common infrastructure is responsible for manipulating logical and
functional resources. This is an optional service whose functionality can vary according
to the particular device, but will typically include; discovery, registration, reservation,
allocation, distribution, pooling, re-configuration, and migration of resources.

By way of example, it may often be the case that a service requiring a particular
resource cannot be started due to the absence of that resource on the local device. The
resource manager service can then be used to identify alternative resources, perhaps a
remote device, some distributed shared memory or a secondary service with a similar
functional semantics, to substitute for the absent primary.

Contingency Management ensures that in the event of an erroneous or inappropriate
condition, actions are available to adapt system behaviour to compensate in the most
appropriate way. This might imply switching to an alternative network access point or
service, using memory on another device, displaying information via alternative means,
etc. A key issue is ensuring correct dependency tracing to guarantee that any and all
affected elements of a PalCom system are either notified or automatically adapted to
compensate for changes induced by error conditions.

In compliance with the idea of PalCom, such contingency management efforts may
often involve the user by ensuring that they are made aware of events and given the
option to intercede in decision making that might otherwise be deferred to automated
adaptation.

The design for contingency management is inspired by Erlang [2,3]. Contingency
management in the PalCom architecture has three essential requirements:

– Detection – It must be possible to detect and handle problem conditions both locally
(regular exception handling in the component) as well as remotely (in non-local
components).

– Isolation – Problems occurring in one component must be prevented from cascad-
ing and thereby causing problems in other parts of the the system.

– Treatment – It must be possible to determine why a problem condition has occurred
and apply preventative and/or remedial actions to treat it.

The communicative nature of service interaction in PalCom is fundamental to en-
sure these requirements. In a PalCom system, we expect all services to be inherently
unstable and unreliable. Therefore, one service cannot rely on another, and errors in one
service should hence not fundamentally affect other services. For example, in the emer-
gency scenario when the sensor starts to malfunction, this must not affect the behaviour
of the assembly. The assembly keep on working even though it no longer receives in-
formation from this sensor, implying that appropriate contingent actions must be taken
to work around the problem and ensure uninterrupted operation.

Specific Contingency Management Handlers can specify different behaviour in dif-
ferent contingency situations. Due to the strong binding between contingency manage-
ment and resource management, many actions taken to resolve fault conditions will
typically be taken at the level of the local resource manager of a PalCom device.



Currently, the PalCom architecture differentiate between exceptions and errors. Ex-
ceptions are defined as non-critical events that are expected to be resolved at the level
of the service or assembly which raised them. Errors however, are defined as fault con-
ditions that a service or assembly is unable to deal with itself and thus must be managed
at the level of the Resource Manager or other suitable infrastructure service.

3 Object Technology and PalCom Architecture

Based on our experience, object technology can bring both benefits and liabilities to
both ambient and palpable computing.

3.1 Visibility and composition

One of the main challenges of the PalCom project has been to reach the best tradeoff
between visibility and invisibility. In order to obtain invisibility we must hide some
details according to changing context. This is an inherent benefit of object technology
by means of encapsulation. But, we also need to expose parts of the inner structure
in order to effectively manage introspection for contingency management. This may in
part be obtained by use of interfaces to the objects/components. It will not reveal the
actual inner structure, but as much of it as the designer has predicted the need for.

To support composition/decomposition the encapsulation of state and interfaces to
the environment is also a great benefit. Again the designer will decide on what level the
environments can be composed and decomposed. But likewise, the granularity of the
compositions are restricted by the expectations of the designer.

3.2 Hierarchical Maps

As a research issue we have explored the pros and cons of encapsulation of the objects
in the settings. An experimental framework has been developed, Corundum [15]. This
framework facilitate a high degree of remote introspection and visibility of the state
of the internal nodes: All of the Corundum framework is based on a hierarchical map
(h-map) concept which provides an “exoskeleton”1 to the process. The h-map is the
structure which holds together the different software parts of the process, and is exter-
nally visible. The h-map is a per-process hierarchical map. Inspired by the Plan 9 file
system concept and the /proc file system of Linux we use the h-map to map names
to entry points, objects, meta data, descriptions of interfaces, etc. Basically, all non-
transient data is kept in the h-maps. The h-map thus enables introspection and remote
manipulation of all nodes, aiding the visibility aspect of Palcom. This clearly breaks
with the OO-concept of data encapsulation, but compared with the traditional OO ap-
proach of using reflection for this, we get a much more open and uniform access to
internal features of the process. One may argue that this gives a too open access to the
features of the process, and to circumvent this a permission facility has been added,
which supports various levels of access.

1 See e.g., http://en.wikipedia.org/wiki/Exoskeleton

http://en.wikipedia.org/wiki/Exoskeleton


3.3 Detached Reflection Server

As an alternative to the h-map approach we have also investigated modifying traditional
reflection models to better suit the needs of PalCom. The main issue being to support
introspection, even on very small devices. In [6] it is argued that reflection capabilities
should be kept separate from the base class level. On very small devices the overhead
of deploying the meta-data needed for traditional reflection may be too large. By ex-
tending the idea of the detached reflection mirrors, we have experimented with an idea
of keeping the meta-data completely separated from the code on a dedicated device, a
“meta-data server”, thus preventing replication. One could stretch the point and say that
h-maps are actually a form of mirrors, at least as seen by the user of services described
in the h-map.

3.4 Dynamically Typed VM

The need for supporting, e.g. change and reconstruction, has made us experiment with a
virtual machine design based on a dynamic type system in the tradition of SmallTalk[8],
instead of a static type system, like, e.g. JVM[11] and .Net[7]. This does not mean that
we enforce programming in SmallTalk: Bytecode compilers have been implemented
for the statically typed languages Java[4] and BETA[12]. Our experiments show that
supporting a statically typed language on a dynamically typed VM is more straight-
forward than the opposite.

4 Conclusion

In the work conducted to date we have defined an architectural basis for palpable sys-
tems. The ambiguity, complexity and special needs of these systems forces us to explore
extreme applications of object technology. In our research we have made a number of
design decisions and discovered many open issues. This paper has touched upon many
of them which we hope will lead to a fruitful discussion of the various technologies,
designs and implementations that support and impact palpable systems.
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