
FRUGAL MOBILE OBJECTS

Benôıt Garbinato
Université de Lausanne,
Ecole des HEC,
CH-1015 Lausanne
benoit.garbinato@unil.ch

Rachid Guerraoui, Jarle Hulaas, Maxime Monod, Jesper H. Spring
Ecole Polytechnique Fédérale de Lausanne (EPFL),
School of Computer & Communication Sciences,
CH-1015 Lausanne
{rachid.guerraoui, jarle.hulaas, maxime.monod, jesper.spring}@epfl.ch

Abstract This paper presents a computing model for resource-limited mobile de-
vices. The originality of the model lies in the integration of a strongly-
typed event-based communication paradigm with abstractions for frugal
control, assuming a small footprint runtime. With our model, an ap-
plication consists of a set of distributed reactive objects, called FROBs,
that communicate through typed events and dynamically adapt their be-
havior reacting to notifications typically based on resource availability.
FROBs have a logical time-slicing execution pattern that helps monitor
resource consuming tasks and determine resource profiles in terms of
CPU, memory, battery and bandwidth. The behavior of a FROB is
represented by a set of stateless first-class objects. Both state and be-
havioral objects are referenced through a level of indirection within the
FROB. This facilitates the dynamic changes of the set of event types
a FROB can accept, say based on the available resources, without re-
quiring a significant footprint increase of the underlying FROB runtime.

It is not the strongest of the species that survives, nor the most
intelligent, but the one most responsive to change. C. Darwin

2

1. Introduction
Motivation

As millions of mobile devices are being deployed to become ubiqui-
tous in our private and business environments, the way we do comput-
ing is changing. We are moving from static and centralized systems of
wire-based computers to much more dynamic, frequently changing, dis-
tributed systems of heterogeneous mobile devices. These devices, some-
times embedded, are typically communication capable, loosely coupled,
and constrained in terms of resources available to them. In particular,
it is expected that many of such devices be limited in terms of process-
ing power, storage and bandwidth, for these may or not be available,
depending on the mobility pattern and the solicitations. Software com-
ponents running on such devices are typically supposed to automatically
discover each other on the network and join to form ad-hoc peer-to-peer
communities enabling mutual sharing of each others functionalities by of-
fering and lending services. Underlying communication substrates might
include wireless LANs, satellite links, cellular networks, or short-range
radio links.

In an ever changing environment of resource-constrained devices, the
frugality of software components is paramount to their operation. Be-
sides conveying that these components are simply ”small” (the meaning
of which depends on the underlying technologies), frugality also conveys
notions of resource-awareness and adaptivity. More specifically, this im-
plies being aware of resources consumed by the software, dynamically
adjusting the quality of service following changes to the environment,
and making sure that resources are in fact available when certain tasks
are launched.

We believe that three principles should drive the design of a computing
model for resource-constrained mobile devices:

1 Exception is the norm. The distinction between the notion of a
main flow of computing and an exceptional flow (i.e., a plan B)
is rather meaningless in dynamic and mobile environments. As
discussed above, the software component of a device should adapt
to its changing environment and it cannot predict the mobility
pattern of surrounding devices or even the way the resources on its
own device will be allocated. The fact that something exceptional
is always going on calls for a computing model where several flows
of control can possibly co-exist, or even be added or removed at
run time.

Frugal Mobile Objects 3

2 Resources are luxuries. Just like it is nowadays considered normal
practice that a software component be able to adjust to specific
changes on some of its acquaintance components, and react ac-
cordingly, we argue for a computing model where the components
can react to the shrinking of available resources. This calls for a
computing model where the components are made aware of the
resources they use. The fact that resources are luxuries also mean
that certain greedy programming habits, such as loops, forks or
wait statements, should be used, if at all, parsimoniously.

3 Coupling is loose. Many distributed computing models have been
casted as direct extensions of centralized models through the re-
mote procedure call (RPC) abstraction. The RPC abstraction aims
at promoting the porting of centralized programs in a distributed
context. Clearly, RPC makes little sense when the invoker does
not know the invokee, or does not even know whether there is one
at a given point in time. Some of the extensions to the RPC ab-
straction, including futures (also called promises) only address the
synchronization part of the problem. Mobile environments rather
call for anonymous and one-way communication schemes.

Devising a robust computing model that, while obeying the above
principles, remains simple to comprehend yet implementable on resource-
constrained devices, is rather challenging.

Overview
This paper presents a computing model based on frugal objects, called

FROBs, which are supposed to be deployed and executed on a small
memory footprint runtime running on a resource constrained device.

Computing is triggered by typed events that regulate the possi-
bly anonymous and asynchronous communication between FROBs
((1) in Fig. 1). A FROB can specify the type of events it can pro-
cess, and how, through behavioral objects ((3) in Fig. 1) – also
called actions. Each such object is bound to the handling of a
single event type, and representing a partial behavior of a FROB.
At any point in time, the set of behavioral objects in a FROB
complies with its external interface, i.e., the set of event types it is
capable of handling ((2) in Fig. 1). Upon receiving an event, the
runtime matches it against the interface to determine whether to
accept the event for further processing or reject it.

Besides preventing casting errors and acting as a filtering mech-
anism, our typed event model makes it possible to adopt a fine-

4

FROB
Device

FR
O

B
 C

queue

interface
FROB
Device

FR
O

B
 B

queue

FROB
Device

FR
O

B
 D

FR
O

B
 A

2

3

2

3

Event
diffusion & routing

publish()

1

interface

behavior

behavior

behavior

Figure 1. Event-based interacting FROBs

grained serialization scheme that exploits the decentralized rep-
resentation of a behavior, and its binding to event types. Our
serialization mechanism does thus not rely on a general (footprint
greedy) reflective scheme and is memory efficient. Since the se-
rialization capabilities are bound to, and integrated with the be-
havioral objects, these act as fully functional units of distribution,
which can be also exchanged between FROBs.

Key to supporting adaptivity with minimal underlying footprint is
the stateless representation of a FROB behavior as a set of first-
class objects within the FROB, together with a level of indirection
to its state and behavioral references. This enables easy replace-
ment of the FROB behavior during execution.

FROBs are inherently threadless and one behavioral object is ex-
ecuted at a time. Long running procedures are split up into small,
short-lived event-based behavioral objects. The resource require-
ments of these individual behavioral objects are thus limited and
can be approximated a priori.

The FROB runtime continuously monitors availability of internal
resources on the device (CPU, memory, bandwidth, etc.) and de-
duces resource profiles when executing behavioral objects. Upon
detecting a significant change in resource availability, the runtime
informs the FROBs deployed on the device about the change.
These notifications are themselves provided as regular typed events

Frugal Mobile Objects 5

that the FROBs can choose to react to by adjusting their external
interfaces.

2. The FROB Computing Model
A FROB conceptually consists of (Fig. 2): (1) an external interface

made of event types and deduced from the set of behavioral objects,
(2) a FIFO-ordered queue of received events, (3) a set of fine-grained
behavioral objects to manipulate the state of the FROB, and (4) the
actual state representation of the FROB.

state

D
ic

tio
na

ry

Incoming,
serialized

events

. . .

”discovery”

”adjust”

”play”

counter

1 2 3

71172

In
te

rfa
ce <event type>

<event type>
<event type>

<behavioral code>
<behavioral code>
<behavioral code>

State

Behavioral Objects

4

5

Figure 2. Conceptual view of a FROB

Both the state and the behavioral objects of a FROB are contained
in named slots in a data structure within each FROB called a dictionary
(see (5) in Fig. 2). The notion of dictionary is similar to that of slots in
the Self language; a slot can contain either state or code.

The event queue of the FROB (see (2) in Fig. 2) is not contained
in the dictionary and is under the sole control of the FROB runtime,
i.e., the FROB has no direct access to it and its only way to consume
events is by having adequate behavior capable of handling the events.
This enforces a decentralized model of programming with multiple flows
of control.

At any point in time, the FROB runtime uses the set of behavioral
objects in the dictionary of the FROBs to create an external interface,
which is mapped into subscriptions for event types that the behavioral
objects are capable of handling. This is illustrated in Fig. 3, which shows
how the event types defined in the external interface (Fig. 3(a)) corre-
sponds to actual behavioral objects present in the dictionary (Fig. 3(b)).

When receiving events, the runtime places incoming events into the
queue of the FROB if they match one of the event types in its external
interface. When there are events in the queue of a FROB, the runtime

6

Incoming,
serialized events

1

In
te

rfa
ce LQAudioEvent

ResourceEvent
...

Incoming,
serialized events

1
In

te
rfa

ce HQAudioEvent
ResourceEvent

...

(a) Event types in external in-
terface

D
ic
tio
na
ry

. . .

”HQAudioEvent”

”ResourceEvent”

...

counter
71172

State

Behavioral Object

(b) Corresponding behavioral ob-
jects in dictionary

Figure 3. Representing the external interface using behavioral objects from the
dictionary (excerpt of Fig. 2)

looks up in the dictionary and executes the behavioral object capable of
handling the typed event.

FROBs are encapsulated entities that do not share state (i.e., entries
in the dictionaries) – the behavioral objects always run isolated from
each other. This combination eliminates the need for synchronization
on entries in the dictionary.

2.1 Typed Events
Events are the basic entity to which FROBs react: the reception of an

event is the only means by which a behavioral object in a FROB is ex-
ecuted. Events serve as communication units between multiple FROBs,
whether deployed on different devices or on the same one.

Events are typically published by the FROBs, or possibly by the run-
time itself following some internal event, and distributed between the
devices using the communication infrastructure provided by the FROB
runtime. An event is accepted by a FROB only if the latter has sub-
scribed to the type of that event, i.e., if the FROB has that event type in
its interface. Unlike in many statically typed systems, FROBs have dy-
namic types as their capabilities may change throughout their lifetimes.

FROBs hence communicate through a topic-based publish-subscribe
interaction paradigm, where the topic is the type. This event-based
scheme is, resource-wise, a cheap alternative to multi-threading systems
that are considered expensive in terms of stack management and over-
provisioning of stacks, as well as locking mechanisms.

Frugal Mobile Objects 7

2.2 Fine-grained Serialization
In order to collaborate, the FROBs first have to discover each other

and then initiate collaboration. FROBs collaborate by exchanging events
and by – as part of the collaboration initiation – exchanging the nec-
essary behavior to interpret the events, i.e., the FROBs adapt to each
other to collaborate. This exchange of behavior is required as the par-
ticular capabilities needed to interpret the events being sent might not
be present on the FROB receiving the events. To perform this exchange
of behavior and data over the network, a serialization mechanism is
required.

In contrast to a resource consuming, general-purpose serialization
mechanism typically found in traditional distributed runtimes, we con-
sider a fine-grained mechanism where each behavioral object is required
to provide its own (de-)serialization capabilities. As such, each behav-
ioral object contains the functionalities to deserialize the incoming event
type that it handles and serialize any typed event that it publishes
(Fig. 4).

Behavioral
Code

D
es

er
ia

liz
er

Incoming,
serialized

events

Deserialized
events Outgoing,

serialized
events

Generated
events

Behavioral Object

S
er

ia
liz

er
S

er
ia

liz
er

S
er

ia
liz

er

Figure 4. Behavioral object with deserializer and serializers

We exploit the very fact that communication between FROBs occurs
through typed events. As mentioned earlier, each behavioral object is
bound to the typed event it can handle, and its execution is solely trig-
gered by a particular typed event. In other words, the (de-)serialization
capabilities required for each behavioral object are thus limited, static
and all known at compile-time.

By bundling the actual (de-)serialization capabilities with the behav-
ioral objects using them, the specific capabilities, so to say, follow their
user, and thus make up a single, fully functional distribution and de-
ployment unit. With these units, it is possible to have only the min-
imal (de-)serialization capabilities loaded by the runtime. Once some
behavior is no longer needed, and thus gets unloaded by the runtime,
its (de-)serialization capabilities get unloaded too. Thus, the coupling
between the fine-grained behavioral representation and the fine-grained

8

serialization mechanism is a memory-efficient combination suited for
resource-constrained devices.

Conceptually, each behavioral object provides its own (de-)serialization
capabilities, a fact which results in a potential memory overhead in sit-
uations where the same capabilities are needed in multiple behavioral
objects on the same device. We circumvent this potential overhead by
simply transparently sharing these capabilities between behavioral ob-
jects based on the same event type, and thereby only loading a single
instance of the functionality.

2.3 Indirectional Reflection
As opposed to a general-purpose class-based reflection scheme, we

rather adopt an indirectional reflection based on a fine-grained repre-
sentation of every FROB in the form of a state representation, together
with a set of first-class objects: behavioral objects. This fine-grained
granularity allows for flexible modifications of the FROB. Through the
separation of state and behavior within the FROB, the behavioral ob-
jects are immutable, which at the same time makes them suitable units
of replacement as no state is lost during the replacement.

”checkSize”

Dictionary

Behavioral Code

”size”

Behavioral Object

S
er

ia
liz

er
S

er
ia

liz
er

1711
State

Behavioral
Code

{
 // get value of size
 Value v1 = dic.get(”size”);

 // check and replace
 if (v1 > 1000) {
 Value v2 = ...;

 // replace value
 dic.put(”size”, v2);
 }
 …
}

Figure 5. Dictionary with state and behavioral objects

Each behavioral object has access to the dictionary of the FROB to
which it belongs, and can manipulate it through appropriate primitives
(for looking up, adding and removing entries) during its execution.

Frugal Mobile Objects 9

The name/value pairs in the dictionary provide a level of indirection
which is key to our reflection capabilities. Using this level of indirec-
tion, all references to state and behavioral objects go through these
name/value pairs, which thus enables the actual values to be easily re-
placed without replacing the references (Fig. 5). In fact, this also enables
behavioral objects to cause their own replacement.

Roughly speaking, a FROB adapts by changing behavior, i.e., what
capabilities it can provide, or how it provides them. This behavioral
change materializes by (1) keeping the current set of behavioral objects
contained in the dictionary, but making adjustments to state on which
they depend, or (2) by actually extending, reducing or modifying the
behavioral objects within that set.

2.4 Logical Time-Slicing
FROBs are inherently threadless. Instead, threads are assigned to the

execution of FROBs (or rather their behavioral objects) by the runtime
in a time-slicing scheme. In this scheme, an event in some FROB’s
queue represents a request for some time-slice, which is granted when
the behavioral object consuming that event is executed.

The FROB runtime does not dictate a specific threading model for ex-
ecuting the behavioral objects. It ensures, however, that (1) a behavioral
object, for which a typed event matching the interface of the FROB has
been received, will eventually be executed on the event, and (2) no two
behavioral objects of the same FROB can execute concurrently. These
two mechanisms combined with the time-slicing scheme gives the FROB
runtime explicit control points between executions, i.e., the FROB run-
time has total control over the FROBs between each granted time-slice.
Besides concurrency control and resource-profiling motivations, these
explicit control points make it easier to manipulate (i.e., to perform be-
havioral changes) the FROB and even leaves the possibility to checkpoint
or migrate it. Specifically, since at any explicit control points no thread
is active within the FROB, its state is well-defined and it can thus easily
be captured or manipulated.

Once executed by the runtime, behavioral objects are allowed to run to
completion, if possible with respect to available resources. The resource
requirements of these individual behavioral objects are thus limited in
terms of actual resource amount needed and their usage duration. These
requirements are associated to each behavioral object expressed in a re-
source profile used by the runtime. This scheme of small, short-lived ex-
ecution units is also promoted by the fact that the FROB programming
model precludes the use of recursive calls, forks, and synchronization

10

primitives within the behavioral objects. In particular, this prevents the
execution of a behavioral object from thread monopolizing the CPU.
Instead, the behavioral objects systematically yield the control to the
runtime. In addition, since the computing model defines no blocking
primitives, a FROB has no way to compromise liveness.

2.5 Resource-Profiling
The FROB runtime constantly monitors the availability of internal

resources such as CPU, memory, bandwidth etc (Fig. 6). Upon detecting
significant changes to resource availability, according to some predefined
threshold values, the runtime publishes notifications enabling FROBs to
possibly react and change behavior.

Resource
Notification

Event

R
untim

e /
V

irtual M
achine

H
ardw

are

Network MemoryCPU

Q:

Dictionary

Q:

Dictionary

Communication
Infrastructure

Resource Profiling &
Monitoring

FR
O

B

FR
O

B

Figure 6. Resource profiling and monitoring in the FROB runtime

Attached to each behavioral object is a resource profile which de-
scribes the amount of resources (CPU, memory, bandwidth, etc) the
object required during its execution. These profiles are generated by
the FROB runtime by measuring the actual execution of the behavioral
objects, and are attached to them subsequently. Through these resource
profiles, the runtime has a prediction of the resource requirement for
a future execution. Throughout the lifetime of a behavioral object, its
execution pattern might change, e.g., by executing differently (and thus
have different resource requirements) depending on the actual event re-
ceived. To try to limit the distorted effects that such execution variations
have on the prediction, the runtime tries to compensate by keeping track
of certain historical executions, and thus the profile gets more and more
accurate the more the behavioral object gets executed.

Frugal Mobile Objects 11

As part of its event scheduling strategy, the runtime uses the resource
profile associated with each behavioral object to evaluate the ability,
at a given point in time, to execute the behavioral object based on the
resource requirement stated in the profile compared to the resource avail-
ability on the device. By comparing the two, the runtime can determine
if there are enough resources to execute a behavioral object. The FROB
runtime uses a best-effort strategy to determine if enough resources are
available to execute a behavioral object. In fact, there is no guarantee
that the behavioral object can run to completion without experiencing
resource-related errors. If not enough resources are available, the execu-
tion of the behavioral object is postponed and an event is published to
the FROBs deployed on the runtime, notifying them about the current
resource shortage. Upon receiving such an event, the FROBs can then
try to collaborate by freeing up resources, i.e., by adapting.

If a FROB desires to adapt to such a notification by actually replacing
behavioral objects, the resource profiles can be used by the FROB as
an indicator for finding an alternate behavioral object that uses less
resources, or uses resources differently, e.g., more bandwidth, but less
CPU and/or memory, such that the resource shortage can be lifted.

For instance, if the resource availability is reduced within a device, a
FROB might adapt using strategies that try to either reduce the current
resource consumption or tries to find alternative sources of resources. We
considered the following strategies

1 Unload Behavior – The FROB can try to unload unused or infre-
quently used behavioral objects present in the dictionary, in order
to try to free resources. Unloading behavioral objects might have a
limited effect on memory, though, as the behavioral objects them-
selves are stateless and thus do not carry a lot of data.

2 Adjust Quality of Service – The FROB can try to offer the same
service at a lower quality in such a way that its resource con-
sumption better fits with the newly announced resource availabil-
ity. Specifically, this adjustment is done by adjusting or replac-
ing behavioral objects using the resource profiles attached to the
behavioral objects to determine which fit better to the resource
availability.

3 Migrate – The FROB can try to migrate from one device to another
following resource availability changes that motivates the execution
to be continued on another device. In particular, this can be cause
by the reception of a notification that the computing environment
on which the FROB is running is about to close down, e.g., due to
power exhaustion.

12

3. Concluding Remarks
This paper presents a candidate model for computing on mobile re-

source devices. We have chosen a name (FROB) for our computing
model that hopefully conveys its experimental nature, rather than names
of dead mathematicians like Pascal, Occam, Euclid or Erlang.

Further experiments are needed and many FROB aspects need to
be refined. Among these aspects, our prototyping revealed that, not
surprisingly, the event-based style of programming combined with the
manual managing of named entries in the dictionary put some complex-
ity on the programmer. There is a clear need for high-level abstractions
for code reuse and dependency management. Further research is for in-
stance needed to explore how (abstract) classes, (open) interfaces and
inheritance could be appropriately used in our context.

Also, it is not yet clear to us how to deal, within behavioral objects,
with loop constructs that cannot be statically analyzed. Specifically,
such constructs complicate prediction of resource consumption of a be-
havioral object, and may to some extend compromise liveness. One
proposal would be to require loops that cannot be statically analyzed to
be explicitly unfolded, such that each iteration is expressed in terms of
an event published to the behavioral object itself, which could possibly
be done with some language construct.

The atomicity of the behavioral objects is also not entirely clear to
manage. Even if our behavioral objects cannot currently be interrupted
by the runtime, we need to envisage interruptions schemes, in particu-
lar those due to resource shortages. Implementing atomicity with small
footprint is however not trivial. Another aspect that also requires fur-
ther investigation is some form of lightweight authentication that could
be realistic to integrate within FROBs, for some applications might pre-
clude FROBs from accepting a new behavior (or even an event) without
appropriate accreditations.

Acknowledgements
This work is conducted under the PalCom project, financed by the

European Community under the Future and Emerging Technologies ini-
tiative.

