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1 Introduction 
Participatory design has traditionally focused on the design of technology applications or the 

co-realisation of a more holistic socio-technical bricolage of new and existing technologies 

and practices. ‘Infrastructural’ design issues like software architectures, programming 

languages, communication, security, and resource models do not seem to be in need of, nor 

amenable to, participatory design. Yet we should expect, and research has indeed shown, 

that there are deeply consequential relationships between use and software architectural 

design. If designers hide the ‘sensing’, ‘reasoning’ and computation technologies do, for 

example, people can find it difficult to perceive, understand and creatively exploit 

technological affordances (e.g. Belotti and Edwards 2001). In addition, the causes of failure 

and breakdowns can be hard to detect and even harder to address (Belotti et al. 2002).  

 

Moreover, the emergence of ubiquitous, ambient and component-based computing has taken 

computing out of comprehensive systems into a multitude of devices, services and resources. 

In some sense this makes the computer disappear or become invisible (Weiser 1991), and it 

enables increased flexibility and ‘bricolage’ of disparate elements, but it also introduces extra 

difficulties, for example when it comes to determining which computing devices, services or 

resources are the most appropriate to use in specific situations. To engage ubiquitous 

computing technologies effectively and creatively, people need support in making 

computational processes, states and potential perceivable or ‘palpable’ as and when they 

may need or wish to do so, and in ways that are appropriate for the particular situation they 

are in, their level of computational literacy and their interest. New software architectures are 

needed to support palpability. To address this, various European research teams have come 

together in the ‘Palpable Computing’ (PalCom) project (www.ist-palcom.org). The project is 

creating a range of palpable ambient computing prototypes in healthcare, emergency services 

and landscape architecture. Its principal aim, however, is to create an open architecture for 

palpable computing. The open architecture will consist of a set of specifications as well as a 

reference implementation of these specifications.  

 

This is an ambitious goal. The demand for appropriateness and the complex, multi-layered 

translations between material computational processes and the functionality and interfaces 
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that users experience, mean that it is a goal that is impossible to meet completely. However, 

some significant progress can and must be made if ubiquitous computing is to be an attractive 

and useful prospect. Clearly, design for palpability is not simply a matter of revealing what 

was previously hidden. Palpable computing is a new design initiative that envisages 

ubiquitous technologies whose states, processes and affordances can be made available to 

the senses, or ‘palpable’, and that are therefore more easily understood, appropriated and 

controlled.  To address palpability, we take six dimensions of the vision of ambient and 

ubiquitous computing, and challenge them by considering their opposites. Users will often 

need to find a position that lies between the extremes: 

 

ubiquitous/ambient computing  complemented with  palpable computing 
invisibility       visibility 

construction      de-construction 

scalability       understandability 

heterogeneity      coherence 

change        stability 

automation      user control and deference 

 

When a supposedly seamless and transparent set of connections breaks down, for example, 

users should be able to make them visible and inspect what has gone wrong. Similarly, users 

should be able to deconstruct an ambient assembly of devices and services, both to inspect it 

for repair and to use its elements for new assemblies. While ambient environments should be 

able to scale up to large numbers of participating elements, they should also remain 

understandable. Coherence must be forged from heterogeneous materials, such as disparate 

digital and physical devices and information, while recognising and where necessary 

preserving the particularities of each. Changes – for example, of location, resources, context 

and activity – are normal in an ambient environment, but sometimes users need to be aware 

of the change and sometimes they need to experience highly stable adaptivity. Users do not 

want to be constantly pestered with choices and they need to be able to delegate ‘routine’ 

decisions, but it is inevitable that the system will often guess wrong, so users must always be 

able to retrieve control – and must have the information to help them to know when they might 

want to do so. 

 

To support the situated negotiation of these core dimensions of ubiquitous computing and to 

allow people to make computational ‘sensing’, ‘reasoning’, potential and actual activities 

palpable, new forms and depths of interactivity are required. This is where the ambition and, 

perhaps, inescapable unattainability of the ultimate design goal of palpable computing lies.  

Some form of human-like social and contextual perception and skill on the part of the 

technologies seems to be essential, yet, research within computer-supported cooperative 

work (CSCW) and related fields proves that it is impossible to produce anything but very 
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limited and flawed versions of such perception and skill (Suchman 1987, Dreyfus 1992). 

When people interact with each other, they are able to negotiate contradictions and 

complementarities with ease, using nuanced skill, perception and judgement to act 

appropriately as the situation demands. They are able, that is, to act with social and 

contextual skill. For computers, however, this is extraordinarily difficult. Palpable applications 

and services ‘must’ be able to make, and support the making of, optimal choices concerning 

each of the dimensions outlined above in situated use, and a palpable software architecture 

‘must’ support the construction and operation of applications and services that can do so. But 

we know in advance that it will not be possible to achieve this completely, and that various 

compromises and simplifications will have to be made. 

 

Many designers of computer applications, spanning groupware and CSCW systems (Dourish 

2003, Bansler and Havn 2006), ubiquitous computing (Chalmers 2003), context aware and 

ambient systems (Belotti et al 2002), grid technology (Hartswood et al, submitted), and 

system security (de Paula et al 2005) share similar concerns. Component-based computing 

potentially makes creative (de-)composition possible and, more explicitly than any socio-

technical step before, turns users into designers. It ‘dissolves’ the privileged position of the 

designer who knows ‘the system’s range of actions in advance’ (Dourish 2003). Research and 

design have begun to address these challenges with flexible architectures that support a 

range of tailoring techniques (MacLean et al 1997), with maps and models that reflect, and 

allow users to modify, system behaviour (Dourish 1995), and ways of revealing system 

properties through ‘seamful design’ (Chalmers and Galani 2004). The PalCom research 

builds on this work. In particular, we seek to move beyond the appreciation that it is 

impossible for designers to predict what kinds of translations of computational states or 

processes would be appropriate for different users in different situations. While developing 

reflective, agent, and component-based support for palpability (Rimassa et al 2005, Ingstrup 

and Hansen 2005), PalCom also supports strategies that rely less on the skill of designers to 

anticipate how and when someone (whose level of computational literacy and situated needs 

for inspection are unknown) might wish to examine computational processes, and more on 

support for ‘reflexive’ – in the sense of direct, two-way, feedback-rich – forms of human-

computing interaction. Our design incorporates the evolution of standards (Belotti et al. 2002) 

and a variety of discovery and inspection tools.  

 

To pursue these software architectural design goals in a way that fits design into emerging 

practice, an ethnographically informed, participatory design approach is essential. However, 

stretching the iterative cycles of participatory design to involve users in the design of software 

architectures poses a number of difficulties. First in line is the indirectness of users’ 

experience of computer architectures.  
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Figure 1  Stretching ‘traditional’ participatory design methods to inform software architecture 

innovation 

 

In ‘traditional’ participatory design, user participation usually informs the design of hardware 

and software that seek to support the users’ work directly. Users are able to engage with 

mock-ups and prototypes of the objects they are co-designing directly, often in a hands-on 

manner. Where software architecture is concerned, this engagement is indirect. Even though 

users of palpable applications and services will rely on features of the software architecture to 

make computational states, processes and affordances palpable, they will rarely interact 

directly with it. In their pioneering exploration of challenges for user-centred design and 

evaluation of infrastructure, Edwards et al (2003) focus on the indirectness of users’ 

experience with computer architectures and raise important questions: 

 

• Is it possible to more directly couple design of infrastructure features to the design of 

application features? 

• How can this more direct coupling exist when the applications the infrastructure 

supports don’t yet exist or cannot be built without the infrastructure itself? 

• Could the context of either users or the use of these unknown applications have an 

important impact on the features we choose? 

• How can we avoid building a bloated system incorporating every conceivable feature, 

while ensuring we have a system that will not be constantly updated (and so 

repeatedly broken) throughout its lifespan? (Edwards et al 2003) 

 

Our experience with participatory design shows that in-depth, long-term engagement with the 

context of users and use is essential for good design. We involve users deeply and equally as 

co-designers in long-term processes of socio-technical co-innovation. This is motivated by the 

fact that long-term use (and design-in-use) of prototypes that is as realistic as possible, in 

settings that are as realistic as possible, allows users to bring hands-on practical creativity to 

the use of new technologies. This is a condition for the emergence of viable future practices 
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which, in turn, should inform the design of the technologies under development. Thus, to bring 

participatory design to the design of software architectures, we must also ask: 

 

• How can we make use experience of software architectures more direct?  

 

In this chapter we describe how we bring participatory design to the design of the PalCom 

open architecture. The schema in Figure 2 gives an overview. Four sets of people with 

different primary interests and skills (users, work analysts, application developers and 

software architects) connect through observations, participatory workshops, and experiments. 

Collaboration is often face-to-face and hands-on, as users, work analysts, developers and 

architects travel to each others’ sites of work, to bring prototypes into real-world use. In the 

context of participatory and ethnographically-informed design, there is nothing new in users, 

work analysts and application developers working closely together to inform and challenge 

the evolving design. Bringing software architects into this process is less usual, however, and 

a technique we have created to support this is the formation of a group of ‘travelling 

architects’ (Corry et al., 2006). Prototypes embody, and serve as the focus for, innovation in 

terms of practice, applications and services, and architecture.  

 

 
Figure 2  Schema of the participatory design process 

 

This method introduces at least four participatory elements to the design of the open 

architecture. First, the analysis of work practice and of corresponding possibilities for 

technical support suggest requirements for an underlying software architecture. Second, 

practitioners’ experiences of using evolving application prototypes expose strengths and 

weaknesses in the software architecture design, and suggest further requirements. Third, the 

presence of ‘travelling architects’ – gaining first-hand experience of users’ work settings and 

of their encounters with prototypes – opens new direct pathways to the software architecture 

and empowers software architects to participate in a wider range of discussions and 

negotiations around the design. Fourth, the application developers within the project are 

themselves users of the evolving open architecture, opening up an opportunity for a 

participatory design relation amongst the computer scientists in the project. 
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Sections 2 and 3 below explore the intersections between these four elements by focussing 

on a central example, tracking the evolution of the concept of ‘assemblies’ through a series of 

reflections from different perspectives, revealing how perspectives and experiences from use, 

application prototype design and software architecture design intertwine in the participatory 

design of the PalCom open architecture. Section 2 explores how the concept of ‘assemblies’ 

arose in the course of close collaboration with one set of prospective users of an application 

prototype. It formulates some core technical challenges, describes scenarios derived from 

work practice of the prototypes in use, and considers some implications for the open 

architecture. Section 3 explores the ways in which the concept of ‘assembly’ was taken up in 

the open architecture itself. In Section Four, we draw out some key insights from this 

reflective process.  

2 Challenges to coupling infrastructure, applications 
and services 

Ubiquitous computing has always posed technical challenges for software architectures 

(Weiser 1993). This stems in part from a complex interplay of requirements from particular 

applications and particular use, and in part from general properties of these kinds of 

computing systems such as resource constraints, use of wireless connectivity, and mobility of 

devices and users. Considered from a technical point of view, many of the six dimensions of 

the challenge for palpable computing (invisibility/visibility, scalability/understandability, 

construction/de-construction, heterogeneity/coherence, change/stability, automation/user 

control and deference) are amenable to established object-oriented software engineering 

practices. In this chapter, we will focus on the negotiation of visibility/invisibility and 

construction/deconstruction in an effort to achieve a creative understanding of computational 

affordances on a small and large scale, although we also touch on the other dimensions. 

Invisibility of the internals of objects, for example, is usually supported by information hiding 

and considered a major technique in managing dependencies in software systems (Parnas 

1972). Construction (or composition) is the raison d'être of component-based architectures in 

which applications ideally may be composed from available software components (Szyperski 

1998). Understandability may be said to be coupled to (static) typing in programming 

languages where program elements are statically assigned a set of permissible data values.  

 

On the other hand, some of the complementary concepts in the challenge pairs give rise to 

interesting issues in languages, middleware, and software architecture. Visibility, for example, 

may be in conflict with information hiding (Ørbæk 2005), in that controlled ways of ‘opening 

up’ software systems are needed. In particular, if exceptions arise in the use of palpable 

computing systems, visibility of what has gone wrong and possibly why becomes important. 

Actually, in a dynamic pervasive computing world, failure cannot really be seen as exceptional 

and thus we instead try to design for contingency handling (a concept covering more than just 

failure handling) rather than exception handling. Change of, e.g., location is also a challenge 
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in that references to resources from software components need to be re-established. De-

construction/de-composition, in particular when the de-construction is not an exact inverse of 

a previous construction, emerges as a major and radical new issue. In general, it may be said 

that much effort has been expended in middleware development in order to make application 

programming as transparent as possible to location/distribution, time, failures etc. whereas it 

was realized at the outset that palpable computing would have to go beyond this in 

addressing the challenge pairs, e.g., in terms of having to support visibility of components 

(and their locations) in order to support de-composition. Indeed, it has quite often been 

remarked that ‘transparent’ in computer science – meaning concealed and invisible – is quite 

contrary to its everyday use where it means open and accountable. One example is that of 

distributed systems where “distribution transparency” means exactly that it is not known to 

components of the system that they reside on different hosts (cf. e.g., Stroud (1992)) 

2.1 Gaining a sense of how coupling could be achieved in a 
world where applications/services don’t yet exist 

These technical issues have given input to ethnographic work as well as participatory design 

work in PalCom. It should be noted that although the sequence here places technical 

constraints and opportunities first, it does not imply a cause/effect relationship from technical 

issues to fieldwork/PD. The analysis of technical issues is deeply and continuously inspired 

by observations of existing practice and develops opportunities and problems for ubiquitous 

computing systems in the light of such observations.  

 

One suite of application prototypes we are developing as drivers for software architectural 

design seeks to support landscape architects in landscape and visual impact assessment 

(LVIA) e.g. of windfarms. The major difficulties in this work lie in evaluating the impact of 

planned but not-yet-existing developments on views and experiences of landscape (Büscher 

2006). This involves identifying and finding key viewpoints, carrying out and documenting a 

complex and rigorous process of evaluation.  

 

 
Figure 3 Landscape architect Lynda trying to see whether a proposed wind farm would be 

visible from touristicallly or otherwise significant viewpoints or when passing:  
While driving, with maps, computer models, GPS 

 

In a 60x60 km study area of undulating hills it can be extremely difficult to keep track of the 

location of a proposed (but not yet physically present) windfarm and envisage its visual and 

experiential impact on people’s experience of the landscape. The ‘sitepack’ prototype is 

designed to support landscape and visual assessment. It allows users to assemble photo and 
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video camera(s), location devices, displays, the car, and other components, including 

computation services that convert location signals or track specific locations.  

 

To illustrate some key ideas and challenges around which our participatory design process 

revolves, and to give readers a sense of some concrete prototypes, we present a set of brief 

envisioning scenarios. They take activities observed in real work practice within a typical 

working day for a landscape architect, re-imagined in the context of new support tools. The 

scenarios, although quite challenging, simplify the reality of work practice, in that they assume 

only one landscape architect is on site. In reality, there will often be two in the car and 

sometimes there will be more than one car. 

 

Assembling the SiteTracker 

In the morning, before driving off to find and assess views within the 60x60 km study area, 

landscape architect Lynda opens her sitepack and assembles a ‘SiteTracker’. The 

SiteTracker consists of a small video-camera, a motor capable of turning 360 degrees, a 

digital compass, a GPS, and a display device. The camera, motor and compass are mounted 

on the car (Figure 4) in order to assist in determining whether the proposed wind farm is 

visible from various stretches of the road. Using a service running on her desktop providing 

an overview of available devices, Lynda assembles the SiteTracker and marks the GPS 

coordinates for the centre of the proposed wind farm. 

 

 

Figure 4 Sketches and mock-ups of the site-tracker  
from participatory design workshops with the landscape architects. 

The SiteTracker service is set running on the display device and Lynda brings the physical 

assembly of devices to the car. She mounts the GPS in the front window, the display on the 

dashboard, and the video camera and compass on top of the motor that, in turn, is mounted 

on the roof of the car inside a protective casing (Figure 5).  

 

Using the SiteTracker when driving 
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Car roof

Car dashboard

 
Figure 5 First SiteTracker prototype and its components. The hands and the line track the 

location of the centre of the wind farm and other important landmarks 
 
While driving, the GPS constantly provides location information, and the digital compass 

directional information of where the video-camera is pointing (with faster updates than the 

GPS). On this basis, the SiteTracker service turns the motor, and thereby the camera, to point 

towards the proposed wind farm, and the resulting video footage from the camera is shown 

on the display with an overlay showing exactly where the centre of the wind farm would be, 

seen from the position of the camera on the roof. 

 
Figure 6 Current Site Tracker prototype 

 

Recconnaisance 

 

Figure 7 The ‘GeoTagger’ indexes photographs with location and direction information 
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While driving, Lynda passes a number of places that will need to be documented later on 

when the weather improves (documenting a viewpoint usually requires clear, sunny weather 

to ensure satisfactory visibility). To help her remember viewpoints where pictures should 

eventually be taken, Lynda frequently stops the car, gets out a still camera, unclips the GPS 

from the dashboard (disassembling the SiteTracker) and re-assembles the GPS with the still 

camera to form a ‘GeoTagger’ (Figure 7), providing a light-weight solution for bringing up into 

towers, through woodland, up hills, etc.  When taking pictures, the GPS coordinates and a 

rough direction from the GPS is stored alongside the pictures on the camera. 

 

Documenting the site 

 
 

Figure 8 The GeoTagger expanded with tripod 

 

The sky clears and Lynda passes an important viewpoint. She decides to document the view 

by taking high quality panoramic pictures (at least 180 degrees) for photomontages for the 

official report. She unclips the SiteTracker assembly from the car roof, replaces the video-

camera with a high resolution still camera and mounts the new GeoTagger asssembly on a 

tripod. The tripod provides tilt information. Using the GeoTagger service she can now take 

panoramic pictures, where locations, accurate directions and tilt of the camera are stored 

along with the pictures (Figure 8). On return to the car, she disassembles the GeoTagger and 

re-assembles the SiteTracker to continue the survey. 

 

Visiting a Landowner 

 

 
Figure 9 Assembly at the landowner’s office 
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Later the same day Lynda visits one of the landowners possessing knowledge about the local 

usages of the terrain, wildlife, bio-diversity, etc. She dismounts the display from the 

dashboard, stores some pictures, maps and video footage on the display’s storage media and 

walks into the landowner’s offices. 

 

In order to present draft layouts and findings, the display is now made part of new assemblies 

(via the landowner’s network), utilising local devices: for example, by accessing material via 

the small display device, but showing and navigating through it using a large screen available 

in the office. Changes, annotations, etc. are stored on the display device. 

 

When Lynda leaves the premises, all material that was shown on external devices (unless 

explicitly agreed otherwise) is taken back with the help of a ‘take back service’, so that no 

potentially confidential material is left on external devices. 

 

Remote access and control of devices 

  
Figure 10 Site Tracker prototype and Site Tracker assembly expanded with remote control 

(mobile phone). Snapshot from a participatory field experiment 
 

On a second survey, it turns out that changes have happened since the last visit. Firstly, parts 

of industrial forestry have been felled, so much more of the wind farm will be visible from an 

important viewpoint. Secondly, now trees and hedges have leaves (the first visit was during 

winter), meaning that the hedge along the roadside can no longer be seen through.  

 

As a consequence, Lynda has to extend the tripod so that the the GeoTagger is situated 

some 2,5 m above ground, making it impossible to look through the camera and operate it. 

Therefore, Lynda extends the GeoTagger assembly with a mobile phone. The image 

recorded by the still-camera is now shown on the phone’s display, and the phone’s keypad is 

used as a remote controller to turn the camera and take pictures.  

 

Remote collaboration 

The visibility of the proposed wind farm is now more problematic than previously envisaged, 

and Lynda starts to wonder whether this may have an influence on the overall layout of the 
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turbines and viewpoints. With the GeoTagger still mounted on the tripod, Lynda now uses the 

mobile phone to create a data connection back to her home office in order to transfer pictures 

of the new visibility to show and discuss with colleagues. As the discussion unfolds, the 

colleague back home is able to remotely control the devices on the tripod (e.g. turning the 

camera and seeing the result). 

 

Below, we summarize how the prototypes described here probe the PalCom open 

architecture. This corresponds to the first of the four participatory elements of the design of 

the open architecture introduced on page 5, how the analysis of work practice and of 

corresponding possibilities for technical support suggest requirements for an underlying 

software architecture. 

2.1.1 Challenges 
 

Continuous (Re-)assembling 
All scenarios involve a continuous (re-)assembly and (re-)construction of services and 

devices. This is richly supported back in the office with appropriate prototype interfaces to 

make and show the device and service assembly. However, the work also calls for various 

disassemblies and reassemblies in the field with more impoverished resources, which must 

nonetheless optimise both making, and representing to the user (making visible) the 

assemblies that are in play.  It needs always to be clear to what assembly (if any) a particular 

device currently belongs, what assemblies are in play, on what device a particular service is 

running, etc.  

 

On-the-move 
In all the scenarios, the assemblies in question will be in motion. This means that even if an 

assembly remains constant itself, its context changes frequently. An assembly must react 

appropriately to resulting changes – by, for example, notifying users if potentially useful 

additional resources become available, such as the processing power in devices in a car that 

has come in radio range or by switching communication channels when one drops out. This 

calls for appropriate choices and behaviour, and appropriate documentation of such choices 

and behaviours, on the part of the assembly. 

 

Shifting modes of cooperation 
The scenarios entail shifts in the actors in collaboration as well as in the modes of 

collaboration. This may require a change in the behaviour of an assembly, even though 

neither its constituents nor its physical environment has changed.  It may, for example, raise 

challenges regarding privacy and confidentiality of actions and materials as well as 

challenges in relation to who operates what assemblies, support for collaborative work, the 

question of whether users are part of the assemblies, and how to make those relations visible 
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and understandable. The ‘character’ of an assembly depends on such intangibles as the 

people involved and their purposes. 

 

Quality of Service 
Different assemblies may be able to do the same things, but with different capacities, for 

example with different levels of accuracy. A high degree of accuracy is not required in all the 

scenarios, but it is very important in all of them that the user knows and is made aware of the 

given accuracy. If a landscape architect is taking photographs in poor weather, for general 

work planning purposes rather than as photographs for official records, she may decide that 

relatively inaccurate direction information, derived from GPS alone, is adequate. But she 

should not be misled, either in the present or when reviewing materials at a later date, that 

just because a compass direction is given, it has the accuracy of a digital compass reading. 

It may be appropriate to operate with an implicit assembly with regard to accuracy, where the 

assemblies ‘choose’ among several potential services offering location information, 

depending on which one is most accurate at the moment (this changes as one moves), but 

paying attention always to represent the accuracy available in the current state. 

 

Un-anticipated use 
In the scenarios above, we have anticipated a number of assemblies coming into effect during 

a rather short period of time. What is also expected from this family of situations is that it will 

produce a set of un-anticipated and unpredictable usages of the existing services and 

devices, thereby providing for unanticipated or emergent (serendipitous) assemblies and 

contexts. This in turn informs architectural discussions about whether ‘types’ may emerge 

during runtime or will be known at design time, whether it is just a matter of naming a 

particular assembly for one’s own later re-use, or whether it is a matter of sharing a new type 

of assembly among colleagues, etc.  

 

3 Assemblies 
In Section 2, ‘assemblies’ were discussed as a concept arising in and from practice and 

prototype design, and some consequent challenges for the open architecture were 

considered. But is the concept of assembly itself also relevant for the open architecture and, if 

so, how?  In this section we use the development of the concept of palpable assemblies as a 

representative illustration of the ways in which the competencies of ethnographers, users, 

software developers, and software architects interact as part of co-design. In doing so, we 

analyze four instances of how the assembly concept has evolved, each explored from three 

different perspectives: software architecture, application development, and use. In section 

3.1, we describe how a basic notion of assemblies was introduced to the open architecture. 

This prompted reflections on the relationship of assemblies to the more conventional software 

architecture concept of service composition, discussed in section 3.2. The challenges thrown 
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up by this highlighted the issue of assemblies as resource composition, discussed in section 

3.3. Lastly, the developing centrality of assemblies foregrounded the need for means to 

browse and inspect them – to make them palpable – discussed in section 3.4. At all of these 

stages, there was a consequential interplay between the perspectives of end-users and work 

analysts, application developers, and software architects, corresponding to all of the four 

participatory elements of the design of the open architecture introduced on page 5. 

3.1 Basic Assemblies 
Landscape architects – like many professionals – routinely put together ‘assemblies’ of 

devices (the car, cameras, tripods, GPS, compass, maps, etc.) for particular jobs. To leverage 

some of the potential of computing technologies into this practice and to drive architectural 

design, users and work analysts (in collaboration with application prototype developers and 

software architects) began to talk about engagement with assemblies, components, and 

devices.  

3.1.1 Software architecture perspective 
The concept of an assembly was embraced by the architects and attempts were made at 

translating this concept directly into software architecture. A decision was taken to make the 

assembly a first-class object of the software architecture. A ‘first-class object’ in this context is 

a construction that users of the software architecture (e.g. application developers) may 

directly use to construct their programmes, e.g., through a set of specific classes in an object-

oriented framework. The assembly was designed as a ‘service’ that had the responsibility of 

coordinating other services. In the context of the architecture, a ‘service’ is functionality 

(running in a process) that announces itself on the network and that can be accessed through 

messages to another process. In the scenarios above, examples of services by this definition 

are the GeoTagger, the displays, the ‘take back service’, etc. Furthermore, the assembly had 

responsibility for monitoring the state of the assembly in terms of the availability of the 

constituent services.  
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Figure 11 The central architectural concepts and their relations taken from the first complete 
version of the open architecture for palpable computing (from first project internal architecture 
overview deliverable in 2004). The boxes illustrate concepts and the arrows define qualified 

relationships between concepts. The concepts related to assemblies are highlighted. 
 

In summary, Figure 11 shows the central concepts of the first basic palpable computing 

architecture. An Assembly is here seen as a set of cooperating Services which are each 

Runtime Components that in addition to being able to run on a device also provide the service 

capabilities outlined above. This design may be seen as a rather direct translation of the use-

oriented concept into architectural concepts where the assembled parts are considered to be 

units of communication and functionality, or services, in a distributed system. 

3.1.2 Application developers’ perspective 
Landscape architects’ work on site is only one of several application domains explored with 

the aim of informing software architectural design in the PalCom project. The challenge for 

the prototype work is not to design ‘perfect’ special purpose prototypes in support of work in 

each application domain, but rather, to support the dynamic configuration and reconfiguration 

of a set of interacting devices into assemblies supporting a wide range of different usages, 

and thereby to challenge and inform the design of the software architecture. This means that 

the participatory design of the application prototypes themselves and concerns with their 

usability are a second order priority. A delicate balance has to be struck to develop realistic 

and functional enough application prototypes that allow users to appropriate and shape a 

socio-technical future where palpable computing is available, but that do not ‘waste’ valuable 

resources needed for the exploration of architectural design requirements. Prototypes may 
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remain ‘sketchy’, complex and fragile for longer than one would otherwise accept. They 

maybe ‘wrapped’, that is, run on a laptop simulating, e.g. a mobile phone, rather than 

instantiated inside an actual mobile phone, and consist of more parts and actions than is 

obvious to the user. 

 

In the first iteration of the GeoTagger the assembly consists of a digital still camera, a GPS, a 

display device (e.g. laptop or PDA) and a mobile phone. When the camera takes a picture, it 

automatically notifies its surroundings of this. At the same time the GPS is constantly emitting 

world coordinates for its current location. A software component assembled with the camera 

and the GPS writes the current location information into the (meta-data part of the) image 

received from the camera. The updated image is then displayed on e.g. the PDA and 

simultaneously sent to a web server (typically located back at the office), utilising the Internet 

capabilities offered by the mobile phone,.  

 

The SiteTracker, similarly, consists of four devices: a GPS, a display, a video camera and a 

digital compass. The GPS constantly provides location information, and the digital compass 

directional information of where the video camera is pointing. The resulting video footage from 

the camera is shown on a display with an overlay showing exactly where the point(s) of 

interest would be. The GPS that takes part in this assembly may be the same GPS as the one 

that is part of the GeoTagger assembly – it is acting as a service in different contexts. 

From a use perspective, going from GeoTagger to SiteTracker or vice versa is a matter of 

disassembling and re-assembling a number of devices. 

Development of the application prototypes takes place in parallel to the development of the 

open architecture, and for this reason the open architecture described in section 3.1.1 was in 

fact not the first architecture developed for these prototypes. For the first iteration of the 

GeoTagger and the SiteTracker, a prototype software architecture implementation, called 

Corundum (Ørbæk 2005), was developed by the application developers themselves. Inspired 

by the understanding of, and vision for, use developed through fieldwork and participatory 

engagement with users, the prototype software architecture implementation behind these first 

application prototypes focused on supporting five main concepts:  

 

• assembly – a set of communicating services 

• service – announces itself to its surroundings and communicates asynchronously with 

other services 

• process – contains services and components and holds a hierarchical map 

• component – a module residing on disk, can be loaded into a process  

• hierarchical map – a tree-structured name space used to hold (most of) the non-

transient data of a single process.  
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Figure 12 Hierarchical maps: ‘Two devices, one hosting two processes each with their own h-

map. The h-maps extend outside the devices to illustrate that they are accessible from the 

outside’. The listing on the right is a commented dump of the h-map of an isolated instance of 

a simple service (du1), in a situation where it cannot see other services. It is one 

of the simplest real-world examples. (Ørbæk 2005) 

 
 

All components and services ran on Corundum (Bardram et al. 2004) which, ‘encourages an 

extrovert programming style, where components and services expose what they can do 

(potential uses, events accepted and sent), what they are doing (eg. logging), and what they 

have been doing (history). This is all done via the h-map which is globally visible, and 

accessible from outside the process over a network.’ (Ørbæk 2005). The Corundum 

framework differs from the first version of the open architecture described in section 3.1.1 in 

several respects. The devices that take part in the assembly are seen as a set of 

communicating services contained in processes on a network. Each of the services can be 

externally configured through manipulation of an externally visible hierarchical map. An 

assembler service also uses this hierarchical map when dynamically (re-)configuring the 

paths of communication necessary for a specific assembly configuration. Each process 

potentially consists of a number of services and components.  

 

One of the main points here is that the technical infrastructure of these early prototypes is 

deeply influenced by a use perspective – devices have a number of external interfaces that 
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users configure in order to assemble the devices and to make them communicate. However, 

the story is, of course, more complicated than that – in order to make prototypes like the 

above do anything beyond the most trivial the need arises for more pure software 

components and services. In the case of the GeoTagger, there is a need for a piece of logic, 

for example, that combines the image and the coordinates. Since services are distributed and 

able to dynamically discover and use each other, this service can in principle reside on any of 

the participating devices. However, making an informed decision – by the user or (semi-) 

automatically by a run-time system – about which device to run such a service on requires 

some degree of software architectural support for visibility and inspectability of available 

resources (processing power, available memory, network bandwidth etc.) – all matters that 

were to become central to the Open Architecture. 

 

Use perspective 

Turning back to the fieldwork, the prototypes were put to use with two landscape architects to 

carry out some initial experiments (Figure 13). The SiteTracker, for example, produces useful, 

dynamic composite pictures that accurately track specified points in the landscape. This is 

first achieved in a static context. Subsequently, when the experiment is repeated in a moving 

car, the prototype continues to work accurately. Unfortunately, the soldering on the 

connection to the digital compass breaks after just a few minutes of driving. We experiment 

with the compass internal to the GPS, but it does not provide updates fast enough and the 

experiment has to be abandoned. 

 

 
Figure 13 SiteTracker 

 

In the course of the experiment a number of difficulties arise that are inspiring for redesign.  

We only outline difficulties and design implications for the software architecture, as our focus 

in this paper is on the participatory process, not the detailed design of the software 

architecture or the application prototypes (for more detail on the architecture design, see 

Andersen et al 2006). 

 
Difficulty Implications for design or design process. 

Calibrating the compass and the GPS is 

awkward. Calibration seems to be fragile and 

requires frequent repetition of the calibration 

process. 

Ways of detecting trouble caused by faulty 

calibrations and practices of testing the accuracy of 

calibrations should be supported.  
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The wrapped setup – with cables and laptop – 

is clumsy, and it is difficult to see anything on 

the screen in the sunlight. 

To enable real users to experiment with the 

prototype in as realistic as possible use situations, a 

less complex design is required  

The translation from GPS to Ordnance Survey 

(OS) coordinates is faulty. The cause is 

unknown. The problem is fixed by driving to a 

known point of interest and recording the 

position in OS coordinates. 

The detection of faults in the computation, and 

ideally their causes, should be supported.  

When trying to re-assemble the SiteTracker 

after a break, it turns out that a LAN/Wi-Fi type 

network has to literally be put in place before 

an assembly can be made. This is because, in 

order to exchange messages, services and 

assemblies at this stage require the presence 

of a network connection that supports UDP. 

On the Windows laptop this is only present if 

the laptop is connected to such a network 

infrastructure in the physical surroundings. 

Therefore, it is not possible to assemble using 

just the single laptop, the camera, the GPS 

and the compass. 

Software architecture should not require connection 

to LAN/Wi-FI infrastructure in it’s physical 

surroundings, as such infrastructures will typically 

not be present when on the move. Generally, the 

software architecture should be able to scale from 

working in infrastructure rich environments to the 

infrastructurally simpler environments.. 

 

A second round of experiments with a modified SiteTracker prototype takes place a few 

weeks later. This time, however, the developers run into a whole series of problems right from 

the start. These, too, reveal pertinent design issues: 

 
Difficulty Implications for design or design process. 

When connecting a device it is sometimes 

necessary to find the virtual com port to which 

it connects in order to make the service 

communicate with the device via this port. The 

virtual com port number is dynamically 

assigned whenever such a device tries to 

connect – the com port may change 

depending on how many devices are currently 

connected. 

When devices connect they should automatically 

acquire the necessary resources for establishing the 

connection. On the other hand, in case of a failure, 

there should be support for making such connection 

resources visible. 

Currently an assembly is invoked via an XML 

specification in a file, that can be located on 

any one of the devices involved in the 

assembly, and the meta assembler – the 

service responsible for setting up and 

maintaining the assembly – then looks around 

and sets up communication between services, 

it does not start them. 

There is a need for an overview of the assemblies 

available for launch and a mechanism to invoke an 

assembly in such a way that it automatically 

attempts to start the required services. 

Connectivity is still required before an 

assembly can be made, even if only one 

computer is involved. Is this a design flaw in 

the Corundum framework? A constraint from 

Windows? An IP problem? If the computer on 

The software architecture should support tools for 

monitoring communication paths and network traffic. 
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which a service is running does not have 

network connectivity, it is impossible to 

transmit messages. 

The SiteTracker loads points of interest from a 

configuration file on startup. The easiest way 

to add or change points of interest is currently 

to manually change the configuration file and 

then to restart the SiteTracker service. 

Corundum actually supports on-the-fly 

changes, but there are no tools to support 

actually doing it. 

Better tools for inspection and change of the state of 

a running service. Use exposes a missing link 

between prototype and architecture. 

There is no mechanism or user interface to 

see or select what configuration file the 

SiteTracker actually reads from when started. 

In this instance there are two different files, 

one with UK OS and one with Danish position 

information. 

The options and selections should be inspectable. 

There could be a need for detecting and visualizing 

the physical context in which services and 

assemblies exist. This may also be subject to (semi-) 

automation, e.g. on the basis of location. 

The translation between GPS and OS is 

wrong, but we do not know where it goes 

wrong. 

It would be nice to be able to take a service out of its 

current assembly and network context and simply 

test it by ‘poking’ it with some input seeing if it comes 

back with a proper output. 

It would sometimes be useful for the 

SiteTracker user interface to visualize the 

coordinates sent to it from the GPS service. 

The basic state of any service should by default be 

able to be shown in a graphical user interface and it 

should be possible to dynamically combine and 

change user interfaces while services are running. 

In the experiment the tracker ‘hands’  (Figure 

5) jumped from one side of the display to the 

other. This could have several causes – the 

field of view could be too big, the point of 

interest could be behind, the coordinates could 

be wrong. In a later trial it turns out that this 

issue was caused by the assembly not being 

properly assembled – i.e. communication 

paths were not properly setup and the 

SiteTracker service was using outdated and 

flawed position and orientation data for its 

calculations.A further test in Aarhus reveals 

similar problems, but here the tracking is 

correct. This suggests that there are also 

conversion failures.  

Again this calls for tools and architecture support for 

getting an overview of running services, their paths 

of communication and whether or not they are 

participating in a running assembly.   

 

In general, the difficulties encountered in the use experiments show that there are more 

activities taking place, with more potential for things to go wrong, than were anticipated, which 

impact at the level of the architecture as well as the level of the prototypes. 
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3.2 Assemblies as Service Composition 
As we saw in section 3.1.1, an assembly is defined as a set of cooperating services. In this 

section we consider the practical implications of this and how it should be realised, again from 

software architecture, application prototype, and use perspectives. 

 

3.2.1 Software architecture perspective 
A main conclusion from the use perspective regarding basic assemblies was that the open 

architecture should support introspection and visibility in various ways (section 3.1). Though 

this was always known in principle, experience from use enabled it to be given specific 

content. Section 3.3 explains how the concept of ‘resources’ partly helps meet the challenges. 

The software architecture was evolved to support this through a refinement of the idea of 

assemblies as sets of services, eventually leading to the realization that the software  

architecture also needs to support a more complete concept of assemblies. 

 

As part of this refinement process, the investigation of the basic concept of ‘assemblies as 

services’, led to exploration and refinements of the assembly concept based, among other 

things, on what services are traditionally thought to be in software architecture (Szyperski, 

1998). One example of this would be the classification of services as ‘stateless’ or ‘stateful’. A 

stateless service does not retain a client-specific state (such as the latest GPS coordinate of a 

specific client) between uses of the service whereas stateful services may do so.  

 

Such a distinction is important for (among other things) reasons of scalability (and 

understandability) of service composition and use in software architecture: if a service is 

stateless it may be replicated so that different clients access different instances of runtime 

components and conversely many clients may use a resource-intensive service concurrently. 

‘Scalability’ is an example of an ‘architectural quality’ (Bass et al. 2003) that exemplifies 

architectural concepts and practice that are important in designing software architectures. 

Most architectural qualities correspond to architecturally significant ‘external qualities’ of ISO 

9126 (ISO/IEC, 2001). In contrast, the qualities that participatory architectural design is also 

concerned with are qualities-in-use (effectiveness, productivity, safety and satisfaction as 

seen from the point of view of ISO 9126).  As a result of field studies and workshops, the 

assembly concept as outlined above was thought to support desirable qualities-in-use. On the 

other hand, little stress was put on external qualities such as performance or scalability in the 

Corundum prototype and in the h-map implementation. Thus these qualities remained to be 

explored in the context of software architecture. The participation of ‘travelling architects’ in 

some of these use experiments (the third of the four participatory elements of the design of 

the open architecture introduced on page 5) helped to communicate the importance of the 

approaches adopted in Corundum, and to effect their transfer to the Open Architecture. 
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A further refinement of the assembly concept was the realization that assemblies (at this state 

of the project) could be thought of as primarily and mainly service compositions. As a 

consequence, it was considered to remove assemblies as a first class concept in the 

architecture: if assemblies were only (dynamic) service compositions, their realisation could 

have been expressed in terms of reference compositions of components/runtime 

components. However, for reasons discussed in more detail in section 3.3.1 below, it was 

decided that it was necessary and beneficial to leave the assembly concepts as a central and 

first-class part of the open architecture.  The architectural refinement of the concepts of 

assemblies and services was then used in application prototyping as discussed below. 

 

3.2.2 Application developers’ perspective 
The second major iteration of the prototypes involved a move towards a more fine grained 

service-oriented architecture as defined by the open architecture. Figure 14 shows a 

schematic of the first version of the SiteTracker assembly, combining a GPS service, emitting 

basic GPS location information, a compass service, emitting compass direction, and a 

SiteTracker service combining video images with location and directional information .  

 

 

GPSService CompassService 

SiteTracker 
Service

GeoParserComponent 

GLDisplayComponent 

VideoInComponent 

Figure 14 Simplified view of the original SiteTracker services, components and 

communication paths, showing that there are three services involved: GPS, Compass and 

SiteTracker; and that the last loads and uses three components inside it  

(arrows depict paths of communication) 

 

Also integrated into the SiteTracker service was a so-called ‘GeoParser’ component. This 

component took raw GPS protocol strings (nmea-0183), parsed and converted them into a 

coordinate system that was appropriate to do the mathematics involved in locating the points 

of interest in the video image. Experience in use and other considerations (outlined below) 

suggested that this structure needed to be changed. The second version of the SiteTracker 

(Figure 15), for example, breaks the GeoParser functionality into two: a basic 

GPSParserService for parsing the GPS protocol strings (emitting coordinates in latitude and 

longitude) and a GeoConversionService for converting between different geographically 

 22



related coordinate systems. Furthermore, these functionalities were no longer loaded directly 

into the main SiteTracker service but instead acted as separate services in their own right.  

 

CompassService 

SiteTracker 
Service 

GLDisplayComp 

VideoInComp 

GeoConversionService GPSParserService 

GPSService 

 
 

Figure 15 Simplified view of the second version of SiteTracker services, components and 

communication paths. 

 

There are several reasons for this small but significant change in the software architecture of 

the prototype. First of all, in a general architectural context we wanted to further explore the 

scalability and service composition qualities of the prototypes. For example, if the main 

SiteTracker service is running on a resource constrained device, the conversion and parsing 

services can be deployed on separate devices in the network in order to achieve better load 

balance. Also, since the parsing and conversion services are more or less stateless, other 

services can dynamically attach to them and make simultaneous use of their functionality – 

saving having to load the component in more than one place and making efficient use of 

available computing power on the network. In the latest version of the SiteTracker this is put 

to practical use when a landscape architect wishes to supplement the augmented video 

image of the SiteTracker service with a digital map showing their current position and the 

positions of points of interest. This map service also needs to parse and convert coordinates 

and therefore looks up running versions of these services on the network and assembles itself 

with them in order to show the updated information.  

 

As users of the SiteTracker, the landscape architects will not see any changes in functionality 

through this underlying change of architecture. However, as users of the software 

architecture, they (and the software developers), experience a significant improvement in 

relation to how flexibly the parts of the system can be composed, de-composed and 

deployed. This enhances the end users’ experience, in that the assemblies and constituent 

services lend themselves to a richer set of options in relation to end-users composing their 

own assemblies. 
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Furthermore, the use experiences gained from the first experiments, as explained in section 

3.1, strongly indicated the need for better tools for inspection and awareness in relation to 

services and assemblies and their context. At this point in time we therefore, firstly, initiated 

development of a basic tool for the browsing and composition of running services and 

assemblies in the network – an ‘Inspector’. Secondly, the need for inspection of any single 

service on the network – potentially from a remote location – inspired initial work on the 

design of a framework for remote inspection and control of services. 

3.2.3 Use perspective (application developers as users) 
The developers of the application prototypes are closely engaged in the design of the open 

architecture. In fact, as we saw, they themselves designed a first prototype implementation of 

a PalCom open architecture, Corundum, in parallel to more comprehensive and conceptual 

efforts on the part of the software architects. They also use this and subsequent iterations of 

the PalCom open architecture as part of their development and implementation work and they 

are, therefore, an invaluable resource in the participatory design process. The goal of the 

open architecture is to support people from different walks of life, with different levels of 

‘computer literacy’ and engaged in different situated activities in making computational states 

and processes palpable. The challenge is to enable the production of appropriate reflections 

of computational states and processes (Dourish 1995) or otherwise ‘sensible’ data. Software 

application developers are highly IT literate users. By examining their current practices of 

making computational states and processes palpable, and by engaging them in a 

participatory design process, important insights for the design of the PalCom open 

architecture can be gained. This corresponds to the last of the four participatory elements of 

the design of the open architecture introduced on page 5. 

 

 
Figure 16 Developing applications and services on prototypes of the PalCom open 

architecture 

 

On the right hand side of Figure 16 we see the SiteTracker and other prototypes working at a 

‘Future Laboratory’ with users from another application domain – different emergency 

response services (police, fire brigade, medical teams) – at the emergency services training 

ground in Aarhus, Denmark. Future Laboratories enable users to ‘colonize’ and shape a 
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socio-technical future by asking and allowing them to accomplish realistic work with functional 

prototypes in as realistic as possible work settings (Büscher et al. 2004). The commitment to 

serious hands-on simulation and exploration of real world work enables embodied, practical 

creativity and reflection as well as participatory evaluation. Here, we have staged a car pile-

up, paramedics are putting bio sensors and locators that will be part of the SiteTracker 

assembly on victims, someone is taking pictures of the victims. That data is sent to the 

trauma doctor in a prototype acute medical coordination centre. The trauma doctor needs to 

decide to which hospital victims should go, taking into account the nature of their injuries and 

the special skills at the different hospitals. Amongst other applications and services, the 

SiteTracker and GeoTagger are used to take pictures of the individual patients at the scene of 

the accident and display them on one of the screens in the Acute Medical Coordination 

Centre. 

 

Future Laboratories foster the emergence and evaluation of future practices, which is 

particularly important when it comes to involving users in the design of software architectures 

envisaged to support the use of ubiquitous computing as it emerges over the next decades. 

Our series of Future Laboratories is still in progress and will be the subject of future 

publications. But the fact that Future Laboratories with end users require functional prototypes 

means that developers have to create, assemble and test them extensively, in effect inventing 

and evaluating emerging future practices of developing software applications – carrying out 

‘Future Labratories’ of development work.  

 

Below we present an analysis of events on the day before the Major Incidents Future 

Laboratory, when developers were making the prototypes work, coding, assembling, and 

addressing difficulties by making their causes ‘palpable’ wherever this is possible with the 

support of the prototype PalCom open architecture.   

 

 
Figure 17 Assembling the SiteTracker 

 

Jesper is assembling the SiteTracker. He looks, waits, then exclaims: ‘What?’ and reads out 

loud: ‘no cameras are currently connected’, reaching for the network cable as he speaks 

(Figure 17). Michael saw that the camera had stopped responding, and turned the switch to 

wake it up, but there are also messages about failed ‘decryption’. They speculate about these 

errors until they hear Esben laughing behind them. To debug, Esben changed the Java 

version of the Corundum architecture prototype so it does not encrypt anymore. Because 
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Jesper is receiving messages from services on the Java architecture and his C++ version 

the architecture tries to decrypt them, they are getting errors, but this is not what is causing 

the lack of connection between the camera service and the display service.  

 

of 

esper’s hand reaches for the network cable again. Similar trouble before was caused by J

network problems. He leaves the cable plugged in, though, and does a number of things:  

 

 
Figure 18 wrong 

 

e picks up the camera and takes a picture (Figure 18), and notes that where it should say 

 

ichael suggests checking each individual subscription. They start the ‘Inspector’ and 

chine. 

hey wonder if there are too many images on the camera (which has also been a problem in 

... for some reason the assembler doesn’t finish the job. It doesn’t set up the 

 the next 

 

 

 Trying to figure out what is 

H

‘get file’, nothing happens, while the assembler says ‘assembly is possible’ and is, indeed, 

assembling. The meta assembler is adding subscriptions to services.  Only the day before 

Jesper took five pictures and it went ‘tick tick tick, they arrived with ‘get file messages’ …’. 

The network is still the prime suspect. Jesper unplugs the cable and switches to the wireless 

network, but to no avail. While Esben’s sensor services are working nicely, Michael and 

Jesper are frustrated. They download and install a loopback adaptor, to create a ‘one 

machine guaranteed functioning network’ to check conclusively whether the problem is

network related. This takes about 30 minutes. But again, they have no luck.  

 

M

examine what is going on. It does not help, and desperation sets in. They restart the ma

Consider to drop the prototype from the experiments at the emergency exercise.  

 

T

the past), but again, no. Jesper explains their current understanding of the problem: 

 

subscription between the two services. It can see both, it attaches to both and

step is actually to set their subscriptions up and for some reason it fails that. So when I 

press the button, due to the fact that the camera does not have any subscribers it 

does not send a picture out on the network and then the service that is supposed to

display it never receives it. 
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The machine is back up and running, and it works … once. The second time nothing 

happens. Jesper suspects that he tried to take another picture too soon and waits a moment 

before he takes another one, and it works again.  

 

When the GeoTagger and the SiteTracker work during the Future Laboratory with the 

emergency personnel, the developers notice a strangely long delay between taking the 

picture and it showing up on the display. A week later, at another demo, they figure out some 

of what is wrong. For example, when the camera takes the picture, it is so busy it stops 

sending even a heartbeat – a simple message saying ‘I’m alive’ to the other services. This 

breaks the assembly. As soon as the heartbeat is back, the assembly is re-established – but 

this takes time – and only when it is done can the overview service display the picture.  The 

solution is to run the heartbeat in a separate thread or as part of the communication layer 

instead of sharing a thread with the camera data and processes. 

 

This story informed a day long ‘fieldstorm’: a data session with application developers and 

software architects where the aim is to generate ideas for technologies that could support the 

work of developers in making the causes of failures (and possibilities for creative assembly) 

palpable.  

 

The discussion brought out a list of methods of finding out what is going on 

• The developers insert print commands into the code to produce messages (like 

‘assembly is possible’, ‘assembling’, ‘no cameras connected’ 

• People make amplifiers/translators for themselves (like the inspector) 

• There is something like ‘pattern recognition’. Flows of messages ‘look right’ when 

things are working and ‘wrong’ when something is wrong 

• There are other sensory clues (e.g. the sound of Mac storage in infinite loop) 

• There is categorisation: specific message types ‘belong’ to specific processes 

• There is a strong sense of sequence and timing, which helps sense whether things 

are going well or badly 

• There is a temptation to re-create ‘good’ (i.e. well known) environments where things 

worked even when that is not necessary 

• People pose hypotheses of what might be wrong and falsify 

• There is a temptation to test things one can easily test, especially under time 

pressure, and to ignore potential causes that are outside one’s scope 

• A lot of the process of encountering and dealing with trouble is made public by 

‘talking out loud to the machine’ (‘no cameras currently connected’) 

 

Finding out is a mixture of ‘intuition, detective work, collaboration and trial and error’. The 

skills that some developers bring to the matter of computational potential are remarkable. 

However they are not just special talents, but also the acquired and honed result of everyday 
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practical engagement with computational technologies. Perceptual acuity and analytic 

proficiency can be trained. They rely on the reflexivity of interaction with computational matter.  

 

The term ‘reflexivity’ as it is used here is inspired by notions of the spontaneous, ‘kneejerk’ 

reflexive reaction to physical stimuli, and the mutually defining, reflexive character of moves in 

human-human interaction highlighted by Ethnomethodology (Garfinkel 1967, Lynch 2000). It 

does not imply deliberate reflection. In interactions with each other, but also with technologies 

and the material world, people treat appearances ‘as “the document of,” as “pointing to,” as 

“standing on behalf of” a presupposed underlying pattern’ (Mannheim, quoted in Garfinkel 

1967). In human-human interaction, this ‘documentary method of interpretation’ is 

sequentially organised and reflexive, that is, each move – each utterance, silence, gaze or 

embodied behaviour – is shaped by preceding and subsequent events. Each move 

prospectively informs the next and retrospectively shapes what has happened before. Each 

move documents a particular understanding of what is going on, and, as such, shapes the 

interaction as a whole – e.g. as an informal conversation, a meeting, or a medical 

consultation.  

 

Although in human-matter interaction only one partner is sentient, engagement relies on 

similarly reflexive, sequentially organised moves and documentary methods of interpretation. 

Materials ‘document’ their processes or states and their ‘understandings’ of moves that their 

human or non-human counterparts make in the interaction. In everyday encounters with 

materials much of our human response to material moves becomes reflexive in the sense of 

automatic. The acts of perception, interpretation and response are unnoticed, what is 

perceived is a ‘flow’ of activities. However, human-matter interaction in science, medicine, 

sport, craft, engineering and many other activities amply documents that perception can be 

trained, that ways can be found to make materials whose moves are outside of the human 

‘naked’ sensorium speak in a way that people can sense. The developers’ methods of making 

computational states and processes ‘speak’ by translating, amplifying and eliciting 

documentary evidence are instantiations of such practices. 

 

It is a major aim, and a major challenge for our participatory design and research efforts to 

support advanced as well as ‘ordinary’ users’ practices of making computational states and 

processes palpable. Paying close attention to developers’ practices is one strongly informing 

strategy for palpable design. Participatory design with developers and end-users, based 

around hands-on engagement with prototype architectures and prototype applications and 

services, suggests that support for ‘reflexivity’ (as well as reflection) is a productive avenue for 

design. 
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3.3 Inspection and Awareness of resources 
 

The troubles occasioned in using the prototypes repeatedly showed the need for 

computational states and processes to be made palpable and ‘brought into the light’ so that 

their operation could be understood and engaged with. In this section we indicate, in very 

brief outline, some of the ways in which this is being achieved. 

3.3.1 Assemblies as Resource Composition 
Some of the challenges outlined above may be handled by supporting a more detailed, fine-

grained, and dynamic modelling and use of resources (e.g., the load level of a CPU such as 

in the camera example above) in palpable computing. The need for handling resources in a 

detailed way in palpable systems led to the inclusion of the concept of first and second order 

resources in the open architecture (Figure 19). Second order resources encompass a diverse 

set of concepts (among others services, actors, and communication channels). Second order 

resources, in turn, contain first order resources which are resources found in hardware and 

software layers below the palpable computing open architecture. Examples include memory, 

storage, and battery power. An assembly consists of collections of first and second order 

resources, and communication. It has a description (of how it is assembled and how it 

behaves when running) and is run on a computational node running the PalCom open 

architecture. 
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Figure 19 Central concepts and relationships from the second complete version of the 

palpable computing open architecture (from 2006 Deliverable, here focused on the concept of 
assembly, with edges blurred). Assemblies and related concepts are highlighted. The 

concepts are further developed and refined from the concepts shown in Figure 11.  
 

 30



3.3.2 Browsing Services and Assemblies 
The experiences gained from developing and debugging the prototypes as well as the 

lessons learned and changes made in relation to the architecture, have together led to the 

development of a tool for browsing, combining and inspecting services and assemblies. This 

latest version of the tool is a reimplementation of the first ‘Inspector’ prototype of such a tool 

mentioned in section 3.2. The new version combines browsing and composition functionalities 

with capabilities for inspection of single services and assemblies. To do this the tool builds on 

top of the framework, also mentioned above, for remote control and display of services.  

Via its graphical user interface, the tool shows all services running on devices in the 

networking context and lets the user inspect possible ingoing and outgoing connections of 

each service. Furthermore, the outgoing and incoming interfaces of services can be combined 

into assemblies and all currently running assemblies can be browsed and inspected. 

 

 
Figure 20 A screen shot of the current prototype implementation of a service and assembly 

browse and inspection tool 

 

This is the functionality supported by the current prototype implementation of the tool, and 

plans are in the near future to extend the tool with abilities to e.g.: 

 

• further inspect and change the state of single services – possibly with the option to 

isolate the service and test it in its own ‘sandbox’, 

• visualize required and used resources for services and possible reconfigurations of 

resources in relation to instantiation of assemblies, 

• monitor and filter data sent between services collaborating in assemblies, and 

• further inspect the properties of the context in which services and assemblies exist. 
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On the one hand the construction of the tool and the functionalities added to it follow directly 

out of a simple set of demands stemming from the development and debugging of the 

prototypes described in the previous sections. However, the point is that in order to make the 

tool truly workable for everyday users from different walks of life, with different skills and 

engaged in different use situations, the underlying software architecture has to support such 

functionalities. By design, any service, for example, has to support inspection and allow for 

the change of its state at runtime. Different forms of monitoring, browsing and changing the 

behaviour of assemblies in context can be supported through the assembly concept with 1st 

and 2nd order resources, encompassing e.g. other services and communication channels.. 

 

In a broader context the development of the tools and the architecture supporting them is a 

way of attempting not only to reveal the materiality of digital entities, such as services and 

assemblies in a network, but also to provide a way of supporting the interplay and dialogue 

with such materials. Such support for reflexivity has a number of software architectural 

implications. In addition to the support for introspection of dynamic resources, i.e., the 

present, the dialogue with computational material can also be based on assemblies that have 

been used previously, i.e., the past, and with possibilities for assemblies in a given 

computational context, i.e., the future.  

 

Supporting users in reusing past (templates for) assemblies points to the need for distributed 

storage. Given the inherently ad hoc network of devices and services in palpable computing, 

this requirement may lead to significant changes in the communication layer of the open 

architecture. If users of a set of services and devices in a given context should be supported 

in making informed choices about possible futures of assemblies, distributed storage should 

be augmented with more powerful semantic models of the capabilities of available 

resources/services. For example, given a set of services (such as a camera and a compass 

service), it should be possible for the open architecture to, e.g., support an application that 

suggests looking for other services (such as a GPS service) to create a SiteTracker 

assembly. 

 

4 Pulling things together  
 
We started out with the puzzle of what the relationship could and should be between software 

architecture design, application prototype design, and experience of use, and of whether 

these are amenable to an integrated participatory design approach. The material presented in 

this chapter shows that these ‘distant’ elements of a large project are indeed mutually 

informing, and can be made very productively so with some conscious focus and targeted 

methods. 
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Figure 21 Map of the start of the participatory design of the PalCom open architecture 

 

Figure 21 summarises our participatory open architecture design iterations up to this point. 

The cross-connections that emerged took various forms, some more general and some direct. 

We began with a set of scenarios, formulated through ethnographic fieldwork, participatory 

analysis and design workshops, prototype design and experiments. The scenarios envisage 

how landscape architects would assemble and use sets of devices and services whose 

processes and affordances can be made palpable, supported by the open architecture under 

design. Focusing on the real needs of skilled practitioners produced initial requirements for 

palpable computing that were more specific and problem oriented than could be expected 

from an attempt to consider ‘ambience’ in the abstract. 

 

The application prototype designers could not wait for a considered open architecture to be 

ready, and so programmed an ‘extreme’ version of their own. Because this was available for 

early experiments with the prototypes in use, further problems, limitations and needs were 

exposed. Due in part to the cross-participation of personnel, going beyond conventional 

communication between software design sub-disciplines, these lessons were incorporated 

into the design for the Open Architecture, where they were generalised to the demands of 

other settings, and integrated with other practical and theoretical imperatives. Some of the 

lessons had a relatively specific focus, such as the atomisation of various services for the 

SiteTracker. Some were more far-reaching, such as the need for inspection and browsing 

services and the forms these could usefully take. At least one was quite structural: the 

adoption of the concept of ‘assembly’, originating in use, as a first-class object in the Open 

Architecture. 

 

Architectural and application prototypes are now being taken to the test in more demanding 

realistic use situations. This requires as full as possible functionality and the application 

prototype developers engage in realistic testing and experimenting. This gave the opportunity 

to introduce a participatory design element among the computer scientists in the project 

themselves, by studying the ways in which application prototype designers made use of the 

evolving Open Architecture. As well as exposing further problems and needs, this 

demonstrated how in practice designers make software palpable, interrogating intangible 

materials in ways that bring them to sight and to voice. Observations of their practices of 
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debugging reveal a reflexive ‘dialogue with computational matter’ that relies on rich sensory 

feedback. Where such sensory data is unavailable, the developers devise means of 

translating, amplifying, manifesting computational processes. This provokes the need, and 

shows some of the possibilities, for ‘reflexive design’, and this is being addressed in the third 

iteration of the application prototypes. These allow users – in the first instance the developers 

themselves – to inspect, monitor and perceive, computational processes and affordances.  

 

Our experience shows that the lessons learnt in ‘traditional’ PD, namely that by involving 

users more innovative and more viable socio-technical change can be brought about, are 

equally true when it comes to architectural design. The point we are at at the moment is a 

gateway to more direct end-user experience of how the open architecture does (or does not) 

support people in making computational affordances and processes palpable. By observing 

and by engaging application developers as users in a participatory architecture design 

process, we have chosen a perspicuous setting where we can study and experiment with 

current practices of making computational processes and affordances palpable. In doing so, 

we gain concrete insight into the constraints and possibilities for software architecture design 

for palpability. If developers cannot make things palpable with the support the prototype 

architecture provides, then end users would also fail. 

 

At the heart of our approach is the observation that engagement with matter is reflexive. What 

this means is that we go beyond reflection. Reflection assumes that some designer 

somewhere can anticipate the situation and the computational literacy of the person needing 

a representation of computational processes. Whether the user’s ‘status’ is chosen by the 

user or ‘detected’ through context sensors, reflection assumes that designers can pre-prepare 

appropriate representations. While we ourselves engage in reflective design, we are certain 

that it is ultimately impossible to achieve appropriateness in this way. In parallel, we therefore 

also chose a radically different approach: by documenting material processes as ‘objectively’ 

and at as ‘atomic’ a level as possible, we provide ‘sensible’ data. We believe that there are 

already standards of producing such documentary evidence emerging, not only in our own 

work. People may not be able to perceive such documentary evidence with their ‘naked’ 

senses and not without training and acculturation. We build tools that can amplify, translate, 

manifest such documentary evidence. This, in turn will enable training and acculturation.  
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