Diagnostic Work in Computer Programming:
Talking through Debugging
John Rooksby
Lancaster University

This paper will concentrate on debugging in co-present, collaborative development work, drawing upon data from an ethnographic study. The focus is upon talk between the programmers at the study site that arose when things went wrong. Given that only a handful of examples are given, that these are from one particular fieldsite, and that these are of face-to-face work, this paper does not demonstrate everything that could be classified as debugging or attempt to claim all debugging is diagnosis. However, it does demonstrate how talking about bugs and talking about debugging can feature as pivotal in debugging amongst co-present programmers. Such talk is taken to be ‘diagnostic work’ on the premise that a diagnosis is something said or something given a name. Diagnostic work in computer programming, where bugs are spoken of and solutions talked through, is argued to be both interesting as a form of diagnostic work but also indicative of some generalisable issues about programming practice.

What follows are four examples of talk between programmers at a small software house in England. There are four programmers working at this software house, a technical director, a customer relationship manager and two admin staff. The company produce an integrated development environment for others to develop applications to run on mobile phones and mobile devices. The programmers sit around a large table to do their work, following an ‘agile’ method that encourages intensive face-to-face communication. Audio and video recordings were made of work at the fieldsite and handwritten notes were taken. The approach was to observe work as it happened. Following a line of enquiry known as ethnomethodologically informed ethnography this research took special interest the ways in which work was observable and reportable between programmers [1].
Example 1

In this example, the programmers have developed software that should communicate data between a PC and a mobile phone. The software is not communicating and Paul is trying to work out why. He has been discussing the issue with Mark. Tom and Dale have also started offering opinions. This is a short excerpt from a longer conversation:

	1

2

3

4

5
	Mark
And that would have kept it open to the phone, I would have thought but

Tom?
Well you =

((Paul sits towards computer, and starts to make a new class in his code))

Mark
= Its worth experimenting with its worth

Dale
 [I know I know I know I tho::ught, I thought there was a bit more to HTTP then that (0.5) is there not?

This example is of interest to me, and is helpful for the purposes of this paper, in that it appears that in line 4 Mark is suggesting that it is no longer worth talking about the code but rather it is worth it for Paul to be working directly on the code using the ideas already discussed. Programmers spend time talking about how technologies work, but never at the same degree of specificity that code works at, and never (or rarely) of specific certainty that what is being said is correct. It often seems that there are multiple ways of proceeding in debugging and that 1) talking about a bug or issue, or 2) working on it at the computer, represent different ways of proceeding that are often both arguably viable. As an example of there being multiple possible ways to proceed - it is suffice to say it is possible to see programmers trying to get others’ attention about a bug or problem but failing and then continuing to work on their own. In this example, the opposite is happening: Mark is rejecting further elaboration of an issue by Tom, but Dale is claiming there is more to be said on the issue. In this paper I am focusing on talk about bugs and errors, and in particular the talk in finding what that error is and how to proceed in solving it. This example is helpful in that it shows that this kind of diagnosis work is never definitely necessary and never definitely the correct way to go about debugging (although neither is it definitely not these), that debugging rarely starts with talk or is settled by talk, but more pertinently that there is an interesting and problematic relationship between talking and coding.

Example 2

In this example the programmers are working together to test software they have written to run as a server. This software is running on Paul’s computer. All the programmers, including Paul, are using their computers to run other software that they have also written which simulates multiple simultaneous connections to this server.

	1

2

3

4

5

6

7

8

9

10

11
	Paul
We’ve still got 15 users missing.

Tom
I’ve only got 200 and something through.

Paul
Waiting queue monitor pointer exception, exception in thread. There’s a problem with the push server, it broke!”

Mark

It’s got to be something straightforward but it could be hard to find.

Gordon
My connections died – could it be anything to do with that, maybe?

Paul
One message failed and caused the whole thing to stop.

Mark
We want to sort the whole thing out higher up, it should still continue if the message fails rather than bothering to try and understand why the message failed. In reality it should just try and send it again.

Paul
There’s nothing on this thread to handle general exceptions.

The first utterances from Paul and Tom (lines 1 and 2) raise the spectre of error, both making visible to the group what is happening on their own computer. Paul then reads an error message from his computer and says there is a problem (lines 3 and 4). Such reading off the screen and summaries of what is happening are important between this group of programmers as it is often a necessary in cooperative work for them to know what is happening on each others screen but what is on other peoples’ screens can be difficult to see. When the exception message is (presumably) found by Paul and read out this serves as something that can be discussed. It is established by Paul that the push server is broken but what the cause of this error is and indeed exactly what this error is anyway has yet to be established. The programmers do not sit and wait for someone to solve this but they talk it through. This ‘talking it through’ is what is being taken to be diagnostic-work in this paper. Lines 1 to 4 where work and events on individual screens are made public can be seen as giving ‘invitation’ and ‘resource’ for a diagnosis; they are an invitation insomuch as in conversation people take turns and a resource insomuch as the next turn in the conversation ought to be relevant to what is being said here (the organisation in conversation is discussed by Sacks [2]). Mark’s response to Paul (line 5) is a methodological statement about what sort of error this is and how it will be found. Such methodological statements are common. In line 6 Gordon gives a candidate diagnosis “my connection’s died”. Such candidate, quick-fire solutions are common, often stating something obvious, and in this case it is again making something visible that might not be known to the others. This candidate diagnosis is refuted, but not because it is definitely not the cause of the error but because it is at the wrong ‘level’. Mark states that irrespective of what the cause of error is, such an error should not cause the push server to break. A second problem has been found: that there needs to be general exception handling so that if a message fails the push server ‘tries to send it again’. “There is nothing on this thread to handle general exceptions” is – in our own terms – a diagnosis. This diagnosis provides a source of trouble and the way forward, if it does not actually address the initial problem it is at least something that needs to be done first. This nesting of problems within problems is common, and features in some of the following examples.
Example 3
In this example Paul has been trying to discover why code he has written that sends a request over the internet does not get an automated response. Printing out the request that is sent is one of several things he has tried, and by doing this he discovers there is a blank line being sent as part of this request. Why is this blank line there? Could it be the source of the communication problem? Dale and Paul, work together at Paul’s screen. They have found a line of code that may be responsible for the blank line. They find that this line of code has been copy-and-pasted into the code as an attempt to solve an earlier error and there is no reason for it to be there.
	1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
	Paul
It might be worth doing a diff on this I might have just copy and pasted that in as part of me

Dale
On (inaudible) ?

Paul
yeah

Dale
Right

Paul
As part of my things to figure out whats different

Dale
((points at code)) Right so you can just * midP across ((moves finger)) from *** here

Paul
= Yeah

Dale
This can be a problem with people trying to figure out whats going on can introduce

Paul
Yeah

Dale
and that become a real nightmare donnit

Paul
Yeah

Dale
Because, you don’t even think to

((Paul runs the ‘diff’ (using the software Araxis Merge)))

Paul
Yeah

Dale
Right

Paul
So I’ve, put that in

Dale
Right

Paul
as part of my effort to figure out what’s going on

Dale
yeah (laughs)

As with the earlier example this problem and solution is nested within other problems; spotting and removing a copy-and-paste error is nested within getting the PC and phone communicating. In this example the suspicion that something that has been copied and pasted into the code at some point and that the copy-and-paste code is the source of the blank line is confirmed by comparing the code with an earlier version of that code (by doing a ‘diff’). The programmers speak as if the blank line is the source of the error, but that is an assumption and has never been shown to be the case. However, after removing the lines the system is soon working.
This example is included because it is largely methodological. It also shows how debugging work can be the cause of problems. The debugging in this case was being done in code, and is not the ‘debugging talk’ that I am taking as ‘diagnostic work’. This example possibly points to a limitation in taking diagnosis as talk. Do we want to take such silent debugging as diagnosing as well? Do we really want to separate the talk from the action? These issues I hope will become more clear during the workshop.
Part of diagnostic work in other domains might be, once a diagnosis is made, working out who to hand the work over to. In programming (at this fieldsite at least) nothing is handed over. This might entail stronger issues of nesting than occur elsewhere.

Examples 4 and 5
In this example the developers have found, quite by chance, that elements of their software run slowly within a ‘virtual machine’ (VM). They have discussed why this might be and how it might be solved, but end up classifying the problem as a ‘known issue’.

	1

2

3

4

5

6

7

8
	Paul
But you would never develop in a VM. Our stuff doesn’t work well in a VM, but you wouldn’t develop in a VM. And our guys are developers.

Dale
Well supposedly

Paul
(laughing) Not really from what we’ve seen

Dale
Too harsh!

Mark
Its good that you’re using that and that we’ve found it. If we got a call coming in we could say “Are you using it on a VM?” and they would say “oh yeah!”. It would be interesting to see how many we got of that nature.

This is an example of how talk about the user can form a solution. In this case they find that something simply isn’t worth solving. In the following example, working out the user’s ability with Oracle is a part of working out how a problem can be solved.
	1

2

3

4

5
	Dale
“It’s okay for a couple of days …” Dale goes on to explain that it makes so many connections that it takes gigabytes of memory.

Paul
“Is that server memory? You know they need to be doubling
the size of the server… they should be distributing the
load… you know, which is a bit of a cop out… but if they’ve
got someone who understands Oracle then they should be able to role out to a couple of servers…”

In example four the programmers satisfied themselves that no more work was necessary at that point because none of their users would be concerned about that particular issue. In example five a particular customer is discussed with reference to how a particular issue could be resolved. In either case, the developers spend a lot of time figuring out their users and it can be seen that a bug can be settled or a particular course of action can be taken with reference to what is known about the users. There is no strong or definite connection then between finding a source of trouble and the pathways for remedial action; remedial action often is contextually relevant to the customer, time available, the value of solving it, priorities etc.

Example 6
In this final example, Dale has been trying to work out why software they have written to handle multiple simultaneous connections to mobile devices failed during testing. He discovered a problem he termed the ‘peek’ problem, and after solving it he explains to the other programmers:

	1

2

3

4
	Dale
I found the peek problem through doing a code walkthrough, the pattern of the messages currently being delivered served as the verification… it’s often easier just to walk through the code when a problem arises. The rr counter was being modified by the peek and remove. It was saying it was looking in one place when it was looking elsewhere.

Dale is summing up what he did, but this is not just a spurious story or boast. Dale’s story not only sums up events but contains a generalised lesson about code walkthroughs and arguably about the peek and remove function. This is an example of how organisational knowledge is shared and grows amongst the team. Again the talk here is as much methodological as it is matter of fact.
Discussion
I have taken diagnostic work to be the ways in which the programmers talk about sources of trouble and pathways for remedial action in the process of debugging. Taking such talk to be diagnostic work is possibly at the expense of certain activities done in silence that could equally be taken as diagnostic work. However, it is hopefully becoming clear that limiting this work to talk is able to highlight the differences and relationship between talking about bugs and getting on and solving them. I am certain that the relationship between talking and coding is a valid research topic, but as to whether this should be discussed in terms of diagnostic work remains, for me, an open question.

Some of the points I have made about the relationship between talking and coding are: 1) There are multiple ways of proceeding that are viable, including talking or just coding 2) Programmers do not always agree on how to proceed 3) Debugging is rarely started by talk or settled with it 4) Debugging can be settled by talk with reference to the user 5) But talk about the user can also lead to one implementation strategy or another 6) Talking is an important means of collaboration 7) Programmers come up with rapid candidate diagnoses 8) But they also spend a lot of time talking things through 9) Problems are often nested within problems 10) Much talk is methodological, that is talk about how to go about the work at hand or about the lessons learned.
The examples do not illustrate how all debugging is done in all situations, but do illustrate debugging to be contingent with multiple possible ways of proceeding. In proceeding, a solution may be found, further problems may be found or it may be that nothing is found and another way of proceeding gets called for. The examples have shown that much of the talk in proceeding with debugging is methodological, that is, programmers are concerned with how they do things and how they can do things next time; learning lessons through practice. Given the importance of practice and reflection on practice in programmers work, I believe practice is an important focus for study.

Debugging is a regular and mundane aspect of computer programmers’ work. Various errors, failures and strange behaviours in code and in software-in-development regularly arise and are overcome. Problems, and indeed certain ‘nasty surprises’ are oriented to as the ‘nature of the business’. Whilst any error in particular might be unexpected, that there are errors is generally not a surprise and programmers can be seen to compile code, run tests, and try things over and over until they are satisfied that the software feature they are working on is working well enough. Bugs are often obviously ‘something going wrong’, but it is not necessarily obvious what exactly is going wrong or what the cause is. It is through embodied, situated, temporal practice that bugs get resolved, and through such practice that lessons are learned about how such practices can be improved. In this paper I have attempted not only to highlight practice, but through taking talk to be ‘diagnostic work’ I have tried to unpick an aspect of this practice: the relation between ‘talking about it’ and ‘getting on with it’.

[1] Button G (2000) The Ethnographic Tradition and Design. Design Studies 21 (2000) 319-332.
[2] Sacks H (1992) Lectures on Conversation Volumes I and II (Edited by Gail Jefferson). Blackwell Publishing, Malden MA.
